资源描述
第五章一元一次方程
要点复习:
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b的解的情况:
(1)当a≠0时,ax=b有唯一的解
(2)当a=0,b≠0时,ax=b无解
(3)当a=0,b=0时,ax=b有无穷多个解
1.列一元一次方程解应用题,必须认真做到“设、列、解、验、答”五个步骤:
“设”――审清题意,明确等量关系,恰当地设立未知数来表示某个未知量。
“列”——根据问题中的等量关系列出方程。
“解”——解方程。检验方程的解,并判断方程的解是否应用题的实际意义。
“验”——双重检验,检验根的正确性,检验解的合理性
“答”——写出应用题的答案。
2.应用题中常见的基本关系式:
(1)行程问题:路程=速度时间
(2)工程问题:工作量=工作效率时间
练习题:
1.有两个工程队,第一队有46人,第二队有28人,从第一队调x人到第二队使两队人数相等, 列方程得:________________________________________
2.一项工程,甲队单独做10天可以完成,乙队单独做15天可以完成,两队合作x天可以完成, 列方程得:________________________________________
3.某汽车厂今年生产汽车16000辆,去年生产x辆,今年比去年生产的汽车增加1倍还多1000辆, 列方程得:________________________________________
4.某车间接到x件零件加工任务,计划每天加工120件,可以如期完成,而实际加工每天多做40件,结果提前6天完成,列方程得:___________________________________
5.将5千克浓度为85%的农药配成浓度为2%的药水杀虫,应该加水x千克
列方程得:________________________________________
6.甲、乙两车工在一天内共加工零件180个,其中甲车工加工x件,乙车工完成的件数是甲车工的, 列方程得:________________________________________
7.收割一块小麦,第一组需要5小时收割完,第二组需要7小时收割完。第一组收割1小时后再增加第二组一起收割,两组共同收割完用了x小时
列方程得:________________________________________
8.正方形边长为x米,将它的一边减少1.2米,另一边减少1.5米,所得到的矩形面积比正方形面积减少14.4平方米, 列方程得:________________________________________
二、分析应用题
1.甲、乙两站相距240千米,客车每小时行65千米,货车每小时行35千米。货车从甲站开往乙站1小时后,客车从乙站开往甲站,货车开出后x小时两车相遇.
列表分析
速度
时间
路程
相等关系
货车
客车
2.要配制浓度为10%的硫酸溶液980千克,需要用x千克浓度为98%的硫酸溶液
列表分析
浓度
溶液
溶质
相等关系
配制硫酸
原硫酸
三、填空题
1.两数之和是a,其中一个数是x,那么这两个数之积是__________________________
2.a是一个两位数,b是一个一位数,若把b放在a的右边,这个三位数是_________________
3.梯形下底是a,上底是下底的,高比下底小7,那么梯形的面积是__________________
4.刘庄、王湾两村合修一个小型水库,按受益面积3:5分担建筑费用a万元,那么刘庄应承担____________万元,王湾应承担_________________万元
四、列方程解应用题
1.我国四大发明之一的黑火药,它所用的原料硝酸钾、硫磺、木炭的重量比是15:2:3,要配制这种火药160千克,问三种原料应各取多少克?
2.A、B两城相距200千米,客车在A城,速度为每小时40千米,吉普车在B城,速度为每小时60千米,两车同时相向而行,问经过多少小时相遇?
3.某学校同学参加绿化植树活动,松树、柏树和柳树共栽了900棵,其中柏树是松树的2倍,柳树是柏树的3倍,问松树、柏树和柳树各栽了多少棵?
课后反思:
- 3 -
展开阅读全文