1、,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,内外压容器,受压元件设计,一、压力容器的构成,经典板壳结构,圆筒,圆柱壳,球形封头,球壳,壳体,椭圆封头(椭球壳),以薄膜应力承载,碟封(球冠与环壳),锥形封头(锥壳),内外压容器,受压元件设计,一、压力容器的构成,圆平板(平盖),平板,环形板(开孔平盖),以弯曲应力承载,环(法兰环),弹性基础圆平板(管板),内外压容器,受压元件设计,二、压力容器受压元件计算,1.,圆筒,1,)应力状况:,两向薄膜应力、环向应力为轴向应力的两倍。,2,)壁厚计算公式:,符号说明见,GB 150,。称中径公式:适用范围,,
2、K1.5,,等价于,pc0.4t,3,)公式来由:,内压圆筒壁厚计算公式是从圆筒与内压的静力平衡条件得出的。,内外压容器,受压元件设计,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,上述计算公式认为应力是沿圆筒壁厚均匀分布的,它们对薄壁容器是适合的。,但对于具较厚壁厚的圆筒,其环向应力并不是均匀分布的。薄壁内径公式与实际应力存在较大
3、误差。对厚壁圆筒中的应力情况以由弹性力学为基础推导得出的拉美公式较好地反映了其分布。,内外压容器,受压元件设计,二、压力容器受压元件计算,由拉美公式知:,厚壁筒中存在的三个方向的应力,其中只有轴向应力是沿厚度均匀分布的。环向应力和径向应力均是非均匀分布的,且内壁处为最大值。筒壁三向应力中,周向应力最大,内壁处达最大值,外壁处为最小值,内外壁处的应力差值随,K=D0,/Di,增大而增大。当,K=1.5,时,由薄壁公式按均匀分布假设计算的环向应力值比按拉美公式计算的圆筒内壁处的最大环向应力要,偏低,23%,,存在较大的计算误差。,内外压容器,受压元件设计,二、压力容器受压元件计算,由于薄壁公式形式
4、简单,计算方便、适于工程应用。为了,解决厚壁筒时薄壁公式引起的较大误差,由此采取增大,计算内径,以适应增大应力计算值的要求。为此将圆筒,计算内径改为中径,即以(,D,i,+,)代替,D,i,代入薄壁内径,公式中:,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,4,)公式计算应力的意义:,一次总体环向薄膜应力,控制值,。,5,)焊接接头系数:,指纵缝接头系数。,内外压容器,受压元件设计,二、压力容器受压元件计算,2.,球壳,1,)应力状况:,各向薄膜应力相等,2,)厚度计算式:,称中径公式,适用范围,p,c,0.6,等价于,K,1.353
5、,3,)公式来由:,同圆筒轴向应力作用情况,4,)计算应力的意义:,一次总体、薄膜应力(环向、经向)控制值:,。,内外压容器,受压元件设计,二、压力容器受压元件计算,2.,球壳,5,)焊缝接头系数:,指所有拼缝接头系数(纵缝、环缝)。,注意包括球封与圆筒的连接环缝系数。,6,)与圆筒的连接结构:,见,GB 150,附录,J,图,J1,(,d,)、(,e,)、(,f,)。,连接原则:不能削薄圆筒,局部加厚球壳。,内外压容器,受压元件设计,二、压力容器受压元件计算,3.,椭圆封头,A,、内压作用下,1,)应力状况,a.,薄膜应力,a,)标准椭圆封头薄膜应力分布:,内外压容器,受压元件设计,二、压力
6、容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,经向应力:最大应力在顶点。,环向应力:最大拉应力在顶点,最大压应力在底边。,b),变形特征:,趋圆,。,c),计算对象意义:,拉应力,强度计算,压应力,稳定控制,b.,弯曲应力(与圆筒连接),a),变形协调,形成边界力。,b),产生二次应力,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,c.,椭圆封头的应力:薄膜应力加弯曲应力。,最大应力的发生部位、方向、组成。,内外压容器,受压元件设计,二、压力容器受压元件计算,K=,内外压容器,受压元件设计,二、压力容器受压元件计
7、算,内外压容器,受压元件设计,二、压力容器受压元件计算,4,)焊缝接头系数。,指拼缝,但不包括椭封与圆筒的连接环缝的接头系数。,5,)内压稳定:,a.,a,/,b,2.6,限制条件,b.,防止失稳,限制封头最小有效厚度:,a,/,b,2,,即,K,1,min,0.15%,D,i,a,/,b,2,,,即,K,1,min,0.30%,D,i,内外压容器,受压元件设计,二、压力容器受压元件计算,B.,外压作用下:,1,)封头稳定以薄膜应力为对象计算:,a.,变形特征:,趋扁,。,b.,计算对象,过渡区,不存在稳定问题。,封头中心部分,“,球面区”存在稳定。,c.,计算意义,按外压球壳。,当量球壳:对
8、标准椭圆封头;,当量球壳计算外半径:,R,o=0.9,D,o,。,D,o,封头外径。,内外压容器,受压元件设计,二、压力容器受压元件计算,2,)对对接圆筒的影响。,外压圆筒计算长度,L,的意义:,L,为两个始终保持圆形的截面之间的距离。椭圆封头曲面深度的,1/3,处可视为能保持圆形的截面,为此由两个椭圆封头与圆筒相连接的容器,该圆筒的外压计算长度,L,=,圆筒长度,+,两个椭圆封头的直边段长度,+,两倍椭圆封头曲面深度的,1/3,。,内外压容器,受压元件设计,二、压力容器受压元件计算,3,)外压圆筒失稳特点,a.,周向失稳(外压作用),圆形截面变成波形截面,波数,n,从,2,个波至多个波。,长
9、圆筒,n,=2,,短圆筒,n,2,。,b.,轴向失稳(轴向力及弯矩作用),塔在风弯、地震弯矩和重力载荷作用下的失稳。,轴线由直线变成波折线。,内外压容器,受压元件设计,二、压力容器受压元件计算,4.,碟形封头,受力、变形特征,应力分布,稳定,控制条件与椭封相似,,只不过形状系数由,K,(椭封)改为,M,。,内容从略,内外压容器,受压元件设计,二、压力容器受压元件计算,5.,锥形封头,1),薄膜应力状态,a.,计算模型:当量圆筒。,60,应力状况与圆筒相似,同处的环向应力等于轴向应力的两倍,,但不同直径处应力不同。,b.,计算公式:,=,内外压容器,受压元件设计,内外压容器,受压元件设计,二、压
10、力容器受压元件计算,5.,锥形封头,c.,计算应力的意义:,一次、总体(大端)环向薄膜应力,控制值,。,d.,焊缝接头系数。,指锥壳纵缝的接头系数。,内外压容器,受压元件设计,二、压力容器受压元件计算,5.,锥形封头,2,)弯曲应力状态(发生于与圆筒连接部位),a.,变形协调,产生边界力,引起边缘应力。,b.,锥壳端部的应力。,端部应力由薄膜应力,+,弯曲应力组成。,大端:最大应力为纵向(轴向)拉伸薄膜应力,+,轴向弯曲,的拉伸应力组成。,小端:起控制作用的应力为环向(局部)薄膜应力。,c.,大、小端厚度的确定。,内外压容器,受压元件设计,二、压力容器受压元件计算,a),大端:当轴向总应力超过
11、,3,时,(由查图,7-11,确定),,则需另行计算厚度,称大端加强段厚度。,计算公式:,其中,Q,称应力增值系数,其中体现了边缘应力的作用,并将,许用应力控制值放宽至,3,。,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,L,1,=,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,内外压容器,受压元件设计,二、压力容器受压元件计算,6.,圆平板,1),应力状况:,两向弯曲应力,
12、径向、环向弯曲应力。,2),两种极端边界支持条件。,a.,简支:圆板边缘的偏转不受约束,,max,在板中心,,径向应力与环向应力相等。,b.,固支:圆板边缘的偏转受绝对约束(等于零),,max,在,板边缘为径向应力。,c.,螺栓垫片联接的平盖按筒支圆板处理,,max,在板中心,。,三、开孔补强,1.,壳和板的开孔补强准则。,a.,壳(内压)的补强,拉伸强度补强,等面积补强。,b.,板的补强,弯曲强度补强,半面积补强。,2.,等面积补强法。,补强计算对象是薄膜应力,大开孔时,由于孔边出现较大的弯曲应力,故不适用大开孔。,1),开孔所需补强面积,A,。,A,=,d,+2,et,(1,f,),d,开
13、孔计算直径,,d,=,d,i,+2c,开孔计算厚度,开孔部位按公式计算的厚度。,d,壳体开孔丧失的承受强度的面积。,2,et,(1-,f,f,),由于接管材料强度低于筒体时所需另行补偿的面积。,内外压容器,受压元件设计,内外压容器,受压元件设计,三、开孔补强,三、开孔补强,2,)有效补强范围,内外压容器,受压元件设计,三、开孔补强,内外压容器,受压元件设计,a.,壳体:,B,=2,d,意义:受均匀拉伸的开小孔大平板,孔边局部应力的衰减范围。,b.,接管:,圆柱壳在端部均布力作用下,壳中环向薄膜应力的衰减范围(同锥壳小端加强段长度的意义)。,3.,d,,,的确定。,1),d,a.,圆筒:纵向截面
14、上的开孔直径,三、开孔补强,内外压容器,受压元件设计,三、开孔补强,内外压容器,受压元件设计,b.,球壳:较大直径,c.,椭封,碟封,同球壳,d.,锥壳:同圆筒。,三、开孔补强,内外压容器,受压元件设计,2),a.,圆筒:按,b.,球壳:按,c.,椭圆封头:过渡区,取封头计算厚度,球面区,,取球面当量球壳计算厚度。,标准椭封当量球壳半径,R,i,=0.9,D,i,三、开孔补强,内外压容器,受压元件设计,d.,碟形封头:,周边,r,部位开孔,,取封头计算厚度,中心,R,部位开孔,,取球壳计算厚度。,三、开孔补强,内外压容器,受压元件设计,e.,锥形封头,取开孔中心处计算直,径,2,R,的计算厚度
15、。,四、法兰,内外压容器,受压元件设计,1.,法兰联接设计,包括垫片、螺栓、法兰三部分。,2.,垫片设计,1),垫片宽度,a.,接触宽度,N,b.,压紧宽度,b,o,c.,有效密封宽度,b,2),垫片比压力,垫片在予紧时,为了消除法兰密封面与垫片接触面间的缝隙,需要施加于垫片单位有效密封面积上的最小压紧力,称为垫片的比压力。,四、法兰,内外压容器,受压元件设计,3),垫片系数,垫片在操作时,为保持密封,需要施加于垫片单位有效密封面积上的最小压紧力与内压力的比值,称为垫片系数。,4),垫片合理设计的原则,,应使垫片在予紧和操作两种状态下所需的压紧力尽可能小(垫片力小)。,3.,螺栓设计,螺栓设计的关键:,应使螺栓中心圆直径尽可能小(力臂小),。,四、法兰,内外压容器,受压元件设计,4.,法兰设计,1),法兰的应力,H,轴向应力,R,径向应力,T,环向应力,2,)法兰设计的关键,应使法兰三个计算应力仅量接近相应的许用应力;趋满应力状态。,内外压容器,受压元件设计,