收藏 分销(赏)

椭圆及其标准方程教学设计.doc

上传人:xrp****65 文档编号:5782741 上传时间:2024-11-19 格式:DOC 页数:9 大小:89.50KB 下载积分:10 金币
下载 相关 举报
椭圆及其标准方程教学设计.doc_第1页
第1页 / 共9页
椭圆及其标准方程教学设计.doc_第2页
第2页 / 共9页


点击查看更多>>
资源描述
椭圆及其标准方程教学设计 青铜峡市高级中学 二○○六年十月 课题 椭圆及其标准方程 一学情分析 学生在必修Ⅱ中学过圆锥曲线之一,圆。掌握了圆的定义及圆的标准方程的推导,学生可以用类比的方法来研究中一种圆锥曲线椭圆。 二、教学目标 知识技能: 〈1〉掌握随圆的定义,掌握椭圆标准方程的两种形式及其推导过程 〈2〉能根据条件确定椭圆的标准方程,掌握运用定义法,待定系统法求随圆的标准方程。 过程方法: 〈1〉通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。 〈2〉通过对椭圆标准方程的推导,是学生进一步掌握求曲线方程的一般方法,并渗透数结合和等价转化的思想方法,提高运用坐标解决几何问题的能力,情感态度和价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。 三、教学重点,难点分析 重点:椭圆的定义及椭圆标准方程的两种形式。 难点:椭圆标准方程的建立和推导。 关键:掌握建立坐标系统与根式化简的方法。 椭圆及其标准方程这一节教材整体来看是两大块内容,一是椭圆定义,二是椭圆的标准方程,椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中,先要学习的内容,所以教材把对椭圆的研究放在了重点,对双曲线和抛物线的教学中巩固和应用,先讲椭圆也与圆的知识衔接自然,学好椭圆对学生学习圆锥曲线是非常重要的。 四、教法建议 〈1〉安排学生提前预习,动手切割圆锥形的事物,使学习了解圆锥曲线名称的来历及圆锥曲线的样子。 〈2〉对椭圆定义的引入,要注重于借助直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,进而形成正确的概念。 〈3〉将课本提出的问题分解成若干小问题,通过学生、教师动手演示,来体现椭圆定义的实质。 〈4〉注意椭圆的定义与椭圆的标准方程的联系。 〈5〉推导椭圆的标准方程时,教师要注重化解难点,实施的补充根式化简方法。 〈6〉讲解完焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程。然后,鼓励学生探索椭圆的两种标准方程的异同点,进一步加深对椭圆的认识。 〈7〉在学习新知识的基础上要巩固旧知识。 〈8〉要突出教师的指导作用,又要强调学生的主体作用,课堂上尽量让全体学生参与讨论。由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生团结协作的团队精神。 五、课前准备 1、每人准备一根细绳、一卷胶带。 2、圆锥曲线模型。 六、教学基本流程 小结与布置作业 例题及练习 回忆圆的定义,及画法 根据条件,建立椭圆的标准方程 类比画出椭圆,引出椭圆定义 七、教学过程设计 问题 设计意图 师生活动 1、我们在必修Ⅱ中,已学习圆的知识,请同学们用集合的观点叙述圆的定义。 在数学学习中,我们可以用类比方法由学习、熟悉的知识引入新的知识。 教师在黑板上,分别用圆规画圆;用线绳画圆。让学生观察、回答圆的定义。 问 题 设计设计意图 师生活动 2、同学们,除了大家所熟悉的圆,还有另一种圆锥曲线----椭圆。请大家举例生活中椭圆的形象。 让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。 学生思考、回答。如:地球运行轨道。圆锥、圆柱的斜截面。教师展示截面是椭圆的模型。 3、如何画椭圆的呢? 培养学生观察能力,类比圆的画法,解决问题。 学生思考、试验。教师可提示采用线绳画。 〈1〉固定在两点F1、F2, 〈2〉细绳长用2a表示2a>∣F1F2∣ 〈3〉套上铅笔,拉动细绳移动笔尖。 4、通过画椭圆观察这条曲线上所有点满足的几何条件是什么? 培养学生观察能力、归纳总结能力,为形成椭圆定交奠定基础。 分析画图过程中的“变”与“不变”的条件M F1,M F2都在变化,但∣MF1∣+∣MF2∣的长度保持不变。 问 题 设计设计意图 师生活动 5、如何描述动点M所满足的几何条件。 整理试验,归纳抽象成数学问题。 把平面内与两个定点F1,F2,的距离之和等于常数(大于∣F1F2︳)的点的轨迹叫做椭圆。两个定点叫做椭圆的焦点;两点间的距离叫做椭圆的焦距(板书)。 6、如何用集合表示M点所满足的几何条件。 使学生能将文字语言转化为数学语言,为推导椭圆标准方程做铺垫。 学生回答:教师板书P=﹛M∣MF1∣+∣MF2∣=2a﹜ 7、我们怎样建立坐标系,求椭圆的标准方程呢? 推导曲线方程时,建立坐标系要适当。 师生共同分析椭圆的特征(如:对称性),使方程比较简单;以线F1F2的中心为原心,以F1F2垂直平分线为Y轴,建立直角坐标系。 完成“建系”,设动点M(x,y)是椭圆上的任意一点,椭圆的焦距为2c(C>0),则F1(-C,0),F2(C,0),又设M与F1F2的距离和等于2a(板书) 问 题 设计设计意图 师生活动 8、请同学们来表示M到F1F2的距离 ∣MF1∣,∣MF2∣ 巩固已学过的两点距离公式,为推导标准方程做准备。 ∣MF1∣= ∣MF2∣= 由P=﹛M∣MF1∣+∣MF2∣=2a﹜得+=2a 9、如何整理化简上式。 学习巩固根式化简,两边平方。 找两位同学板演,其余同学自己完成,化简到: F1 O F2 10、观察下图,找出表示a、c、的线段 Y 确定a、b、c的几何定义及其关系 通过观察y轴是F1 F2的中垂线,P到F1 F2的距离相等,OF1,OF2被y轴平分,所以: X ∣PF1∣=∣PF2∣=a, ∣OF1∣=∣OF2∣=c, ∣P0∣= 由∣P0∣=,令b=,b2=a2-c2,即:代入得椭圆形标准方程: 根据上图知:a﹥b﹥0 问 题 设计设计意图 师生活动 11、对于椭圆形标准方程(a﹥b﹥0)的特点是什么?还有什么结论。 适时总结归纳,区分焦点在X轴与Y轴的不同。 学生讨论,教师板书。 <1>(a﹥b﹥0)的焦点在X轴上; <2>a-b=c(结论) 12、P38思考 Y F2 M X F1 推导焦点在Y轴上的椭圆标准方程 学生已有推导焦点在x轴上的椭圆标准方程的经验,教师通过以下几点引导,由学生完成〈1〉设出动点,焦点坐标,注:特别教师焦头烂额坐标,应在y轴上〈2〉列出相等关系(定义)〈3〉化简整理,得椭圆的另一标准方程 13、椭圆的另一个标准方程(a﹥b﹥c)有什么特点,有什么结论? 对比上一个焦点在x轴上的椭圆标准方程 〈1〉交点在y轴上 〈2〉a2-b2=c2(结论) 问 题 设计设计意图 师生活动 例1P38 求标准方程 区别焦点不同,选择设不同的方程,会用定义来求椭圆标准方程,或用待定系数法来求椭圆标志方程 由学生独立思考,发表各自的想法,教师适时引导,强调要注意的问题,及时总结: 〈1〉确定要设的椭圆标准方程 〈2〉要求椭圆标准方程,即要求a,b 〈3〉恰当列出含a,b,c的方程 〈4〉相等关系a2-b2=c2 练习:写出适合下列条件的椭圆方程 〈1〉a=4,b=1,焦点在x轴上。 〈2〉a=4,c=,焦点在y轴上。 〈3〉a+b=10,c=2 分析:以上练习较简单,其目的为了巩固求椭圆标准方程,及区别焦点在x轴上和焦点在y轴上的椭圆标准方程 小结:以提问形式 〈1〉椭圆是怎样的点的轨迹?〈2〉椭圆的标准方程是怎样的? 〈3〉椭圆的两个标准方程有什么区别? 布置作业:课本习题2.1A组P463题 9
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服