收藏 分销(赏)

鸽巢原理教学设计.doc

上传人:仙人****88 文档编号:5769961 上传时间:2024-11-19 格式:DOC 页数:4 大小:29.51KB
下载 相关 举报
鸽巢原理教学设计.doc_第1页
第1页 / 共4页
鸽巢原理教学设计.doc_第2页
第2页 / 共4页
鸽巢原理教学设计.doc_第3页
第3页 / 共4页
鸽巢原理教学设计.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、鸽巢问题教学设计洪湖市实验小学 方红莲【教学内容】义务教育教科书数学六年级下册第68页。【教学目标】1经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。2 通过操作发展学生的类推能力,形成比较抽象的数学思维。3 通过“鸽巢问题”的灵活应用感受数学的魅力。【教学重点】经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。【教学难点】理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。【教具、学具准备】每组都有相应数量的盒子、铅笔、书。【教学过程】 一、课前游戏引入。师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来

2、后)师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。师:开始。师:都坐下了吗?生:坐下了。师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?二、通过操作,探究新知(一)教学例11出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆

3、的情况,师板书各种情况 (3,0) (2,1) 师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。(4,0,0),(3,1,0),(2,2,0),(2,1,1),师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。(通过操作让学生充分体验感受

4、)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考组内交流汇报师:哪一组同学能把你们的想法汇报一下?生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。2解决问题。(1)课件出示:5只鸽子飞回4个鸽笼,

5、至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动独立思考 自主探究)(2)交流、说理活动。师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。(二)教学例21出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里

6、至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2学生汇报。 生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 52=2本1本(商加1),72=3本1本(商加1)92=4本1本(商加1)师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。交流、说理活动:师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决

7、实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。3解决问题。71页第3题。(独立完成,交流反馈)小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。三、应用原理解决问题 师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗?师:如果9个人每一个人抽一张呢?生:至少有3张牌是同一花色,因为94=21四、全课小结。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服