收藏 分销(赏)

鸽巢原理教学设计.doc

上传人:仙人****88 文档编号:5769961 上传时间:2024-11-19 格式:DOC 页数:4 大小:29.51KB 下载积分:10 金币
下载 相关 举报
鸽巢原理教学设计.doc_第1页
第1页 / 共4页
鸽巢原理教学设计.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
《鸽巢问题》教学设计 洪湖市实验小学 方红莲 【教学内容】 《义务教育教科书数学》六年级下册第68页。 【教学目标】 1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。 2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。 3. 通过“鸽巢问题”的灵活应用感受数学的魅力。 【教学重点】 经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。 【教学难点】 理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 【教具、学具准备】每组都有相应数量的盒子、铅笔、书。 【教学过程】 一、课前游戏引入。 师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后) 师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。 师:开始。 师:都坐下了吗? 生:坐下了。 师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗? 生:对! 师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗? 二、通过操作,探究新知 (一)教学例1 1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1) 师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢? 生:不管怎么放,总有一个盒子里至少有2枝笔? 是:是这样吗?谁还有这样的发现,再说一说。 师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导) 师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。 (4,0,0),(3,1,0),(2,2,0),(2,1,1), 师:“至少”有2枝什么意思? 生:不少于两只,可能是2枝,也可能是多于2枝? 师:就是不能少于2枝。(通过操作让学生充分体验感受) 师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢? 学生思考——组内交流——汇报 师:哪一组同学能把你们的想法汇报一下? 生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。 你发现什么? 生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。 2.解决问题。 (1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么? (学生活动—独立思考 自主探究) (2)交流、说理活动。 师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法? 生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。 师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:5÷4=1……1) 师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。 (二)教学例2 1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? (留给学生思考的空间,师巡视了解各种情况) 2.学生汇报。 生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 5÷2=2本……1本(商加1),7÷2=3本……1本(商加1) 9÷2=4本……1本(商加1) 师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。 交流、说理活动: 师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。 3.解决问题。71页第3题。(独立完成,交流反馈) 小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。 三、应用原理解决问题 师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么? 师:先验证一下你们的猜测:举牌验证。 师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢? 生:至少有3张牌是同一花色,因为9÷4=2…1 四、全课小结。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服