资源描述
2014年杭州市第一次高考科目教学质量检测物理模考试卷
14.如图所示,小车上物体的质量为m=8kg,它被一根在水平方向拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6N.现沿水平向右的方向对小车施一作用力,使小车由静止开始运动起来.运动中加速度由零逐渐增大到1m/s2,然后以1m/s2的加速度做匀加速直线运动,以下说法正确的是
A.物体受到的摩擦力先减小后增大,先向左后向右
B.弹簧对物体的作用力将发生变化
C.当小车向右的加速度为0.75m/s2时,物体受静摩擦力的作用
D.小车以1m/s2的加速度向右做匀加速直线运动时,物体受到摩擦力为8N
14.如图所示为由地面同一点踢出一个足球的三条飞行路径,三条路径的最高点是同高的。忽略空气对飞行的影响。下列说法正确的是:
A.路径3飞行的时间最长
B.各路径的初速度的竖直分量相同
C.路径2的初速度的水平分量最大
D.路径1的落地速率最大
15.地月系统的“第一拉格朗日点”处于地月连线上偏向月球一侧,是登月必经之路,非常适合建设登月中转和补给站。我国的著名科学家钱学森就曾经提出要加大对该点的关注力度,因为它今后必将成为“太空高速路”的连接点。在该点,物体绕地球做圆周运动的轨道周期与月球绕地球做圆周运动的轨道周期相同,则物体的:
A.线速度大于月球的线速度 B.角速度大于月球的角速度
C.向心加速度大于月球的向心加速度 D.地球对物体的引力大于月球对物体的引力
15.压敏电阻的阻值随所受压力的增大而减小,有位同学把压敏电阻与电源、电流表、定值电阻串联成一闭合电路,并把压敏电阻放在桌子上,其上放一物块,整个装置放在可在竖直方向运动的电梯中,如图甲所示。已知0~t1时间电梯静止不动,电流表的示数为I0,现开动电梯,得到电流表的变化如图乙所示,则关于t2~t3时间内物块与电梯运动状态的叙述正确的是
A.物块处于失重状态,电梯向下做匀加速直线运动
B.物块处于超重状态,电梯向上做匀加速直线运动
C.物块仍旧平衡,电梯向上做匀速直线运动
D.物块仍旧平衡,电梯向下做匀速直线运动
14.下列说法正确的是( )
A.质点、位移都是理想化模型
B.牛顿的三个定律都可以通过实验室实验来验证
C.单位m、kg、s是一组属于国际单位制的基本单位
D.牛顿最早指出力不是维持物体运动的原因
15.有一种测量人体重的电子秤,其原理图如图所示,它主要由三部分构成:踏板、压力传感器R(是一个阻值可随压力大小而变化的电阻器)、显示体重的仪表(实质是理想电流表),设踏板的质量可忽略不计,已知理想电流表的量程为3A,电源电动势为12V,内阻为2Ω,电阻R随压力变化的函数式为R=30-0.02F(F和R的单位分别是N和Ω)。下列说法正确是( )
A.该秤能测量的最大体重是1300N
B.体重为1300N应标在电流表刻度盘2A刻度处
C.该秤零刻度线(即踏板空载时的刻度线)应标在电流表刻度盘0刻度处
D.该秤零刻线应标在电流表刻度盘的最大刻度处
16.已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍。不考虑地球、月球自转的影响,由以上数据可推算出( )
A.地球的平均密度与月球的平均密度之比约为9:8
B.地球表面重力加速度与月球表面重力加速度之比约为9:4
C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9
D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之比约为81:4
+ + + + + +
— — — — — —
+
O
M
N
17.如图所示,带电粒子P所带的电荷量是带电粒子Q的3倍,它们以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入匀强电场,分别打在M、N点,若OM=MN,则P和Q的质量之比为( )
A.3∶4 B. 4∶3
C. 3∶2 D. 2∶3
二、选择题(本题共3小题。在每小题给出的四个选项中,至少有一个选项是符合题目要求的。)
18.如图所示,一个小球(视为质点)从H=12m高处,由静止开始通过光滑弧形轨道AB,进入半径R=4m的竖直圆环,且圆环与小球间的动摩擦因数处处相等,当到达环顶C时,刚好对轨道压力为零;沿CB圆弧滑下后,进入光滑弧形轨道BD,且到达高度为h的D点时的速度为零,则h之值不可能为(g=10 m/s2,所有高度均相对B点而言)( )
A.12m B.10m
C. 8.5m D.7m
19.有一辆遥控电动玩具汽车,已知车内电动马达驱动后轮转动.玩具汽车的后轮、前轮分别放在平板小车甲、乙之上.如图所示.按动遥控器上的“前进”、 “后退”键,汽车就能前进或后退,地面与甲、乙车之间的摩擦力不计.以下叙述正确的是( )
A.按动遥控器上的“前进”键,乙车对前轮摩擦力向前,乙车相对地面向前进
B.按动遥控器上的“前进”键,甲车对后轮摩擦力向前,甲车相对地面向后退
C.按动遥控器上的“后退”键,甲车对后轮摩擦力向后,甲车相对地面向前进
D.按动遥控器上的“后退”键,乙车对前轮摩擦力向后,乙车相对地面向后退
20.如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S。某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相等,经过一段时间有大量粒子从边界OC射出磁场。已知∠AOC=60°,从边界OC射出的粒子在磁场中运动的最长时间等于T/2 (T为粒子在磁场中运动的周期),则从边界OC射出的粒子在磁场中运动的时间不可能为( )
A. T/8 B.T/6 C.T/4 D.T/3
14
15
16
17
18
19
20
C
B
C
A
ABD
BC
A
13.某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子从c点射出时的速度为___ __。
14.匀强电场中的三点A、B、C是一个三角形的三个顶点,AB的长度为1m,D为AB的中点,如图所示。已知电场线的方向平行于△ABC所在平面,A、B、C三点的电势分别为14V、6V和2V。设场强大小为E,一电量为1×10-6C的正电荷从D点移到C点电场力所做的功W为 J。并做出经过A点的电场线,保留作图痕迹.
13.科研人员乘气球进行科学考察.气球、座舱、压舱物和科研人员的总质量为990 kg.气球在空中停留一段时间后,发现气球漏气而下降,及时堵住.堵住时气球下降的速度为1 m/s,且做匀加速运动,4 s内下降了12 m.为使气球安全着陆,向舱外缓慢抛出一定的压舱物.此后发现气球做匀减速运动,下降速度在5分钟内减少3 m/s.若空气阻力和泄漏气体的质量均可忽略,重力加速度g=9.89 m/s2,则抛出压舱物前,气球的加速度为_________m/s2;抛掉的压舱物的质量为________kg。
18.爱因斯坦对于伽利略的工作给予了高度的评价:伽利略的发现以及他所应用的科学推理方法是人类思想史上最伟大的成就之一,而且标志着物理学的真正开始。
(1)(多选)伽利略对自由落体运动的研究,是科学实验和逻辑思维的完美结合,如图所示,可大致表示其实验和思维的过程,对这一过程的分析,下列说法正确的是( )
A.其中的甲、乙图是实验现象,丁图是经过合理地外推得到的结论
B.其中的丁图是实验现象,甲图是经过合理外推得到的结论
C.运用甲图实验,可“冲淡”重力的作用,更方便进行实验测量
D.运用丁图实验,可“放大”重力的作用,从而使实验现象更明显
(2)理想实验是物理学发展过程中的一种重要的研究方法。伽利略曾设想了一个理想实验,如图所示(图中两斜面底部均用一小段光滑圆弧连接),下面是该实验中的一些事实和推论。
a.如果没有摩擦,小球将上升到原来释放时的高度。
b.两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。
c.减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度。
d.继续减小第二个斜面的倾角,最后使它成为水平面,小球要沿水平面做持续的匀速运动。
① 将上述理想实验的步骤按照正确的顺序排列
②在上述的步骤中,属于可靠的事实有 ,属于理想化的推论有 。(以上三个空格填写序号即可)18、(1)AC (2)(1)(bacd)(2) b acd
22.(12分)某班举行了一次物理实验操作技能比赛,其中一项比赛为用规定的电学元件设计合理的电路图,并能较准确地测量一电池组的电动势及其内阻。给定的器材如下:
A.电流表G(满偏电流l0mA,内阻10Ω)
B.电流表A(0~0.6A~3A,内阻未知)
C.滑动变阻器R0(0~l00Ω,1A)
D.定值电阻R(阻值990Ω)
E.多用电表
F.开关与导线若干
(1)小刘同学首先用多用电表的直流“10V”档粗略测量电池组的电动势,电表指针如图所示,则该电表读数为 V。
(2)该同学再用提供的其他实验器材,设计了如图甲所示的电路,请你按照电路图在答题卷的图上完成实物连线。
(3)丙图为该同学根据上述设计的实验电路利用测出的数据绘出的I1-I2图线(I1为电流表G的示数,I2为电流表A的示数),则由图线可以得到被测电池组的电动势E= V,内阻r= Ω(保留2位有效数字)。
16.在“探究功与物体速度变化关系”的实验中,某实验研究小组的实验装置如图甲所示。木块从A点静止释放后,在1根弹簧作用下弹出,沿足够长的木板运动到B1点停下,O点为弹簧原长时所处的位置,测得OB1的距离为L1,并记录此过程中弹簧对木块做的功为W。用完全相同的弹簧2根、3根……并列在一起进行第2次、第3次……实验,每次实验木块均从A点释放,木块分别运动到B2、B3……停下,测得OB2、OB3……的距离分别为L2、L3……作出弹簧对木块做功W与木块停下的位置距O点的距离L的图象如图乙所示。
(1)根据图线分析,弹簧对木块做功W与木块在O点的速度v0之间的关系。
(2)W—L图线为什么不通过原点?
A
O
B1
L/cm
W
0
1
2
3
4
5
6
12
18
24
30
36
42
48
乙
甲
(3)求出弹簧被压缩的长度LOA。
16.(1)由动能定理知L∝ ,由图线知W与L成线性变化,因此W与 也应成线性关系 (2)未计木块通过AO段时,摩擦力对木块所做的功。(3)3cm
16.在“描绘小灯泡的伏安特性曲线”实验中,待测小灯泡上标有“3V,1.5W”的字样。测量小灯泡两端的电压和小灯泡的电流时,备有如下器材:
A.直流电源3V(内阻可不计) B.直流电流表0 -3A(电阻约0.1Ω)
C.直流电流表O- 600mA(内阻约0.5Ω) D.直流电压表0-3V(内阻约3kΩ,)
E.直流电压表O -15V(内阻约200kΩ) F.滑动变阻器10Ω、1A
G.滑动变阻器lkΩ、300mA
①除开关、导线外,为了完成该实验,需要从上述器材中选用的器材有 .(用序号字母表示)
②利用给出的器材通过实验描绘出小灯泡的伏安特性曲线,要求测量多组实验数据,请你在答卷虚线框内画出实验原理电路图;并将图中实物连接成实验电路图.
③下表中的各组数据是此学习小组在实验中测得的,根据表格中的数据在方格纸上作出该小灯泡的伏安特性曲线.
④试估算当小灯泡两端电压为2.2V时,该灯泡的实际功率为 W(结果保留两位有效数字)
17.为了最大限度地减少道路交通事故,全省各地开始了“集中整治酒后驾驶违法行为”专项行动。这是因为一般驾驶员酒后的反应时间比正常时慢了0.1~0.5 s,易发生交通事故。图示是《驾驶员守则》中的安全距离图示和部分安全距离表格(如图所示)。
请根据该图表回答下列问题(结果保留两位有效数字):
(1)请根据表格中的数据计算驾驶员的反应时间.
(2)如果驾驶员的反应时间相同,请计算出表格中A的数据.
(3)如果路面情况相同,车在刹车后所受阻力恒定,取g=10 m/s2,请计算出刹车后汽车所受阻力与车重的比值.
(4)假设在同样的路面上,一名饮了少量酒后的驾驶员驾车以72 km/h速度行驶,在距离一学校门前52 m处发现有一队学生在斑马线上横过马路,他的反应时间比正常时慢了0.2 s,会发生交通事故吗?
23.(16分)2012年我们中国有了自己的航空母舰“辽宁号”,航空母舰上舰载机的起飞问题一直备受关注。某学习小组的同学通过查阅资料对舰载机的起飞进行了模拟设计。
如图,舰载机总质量为m,发动机额定功率为P,在水平轨道运行阶段所受阻力恒为f。舰载机在A处以额定功率启动,同时开启电磁弹射系统,它能额外给舰载机提供水平向右、大小为F的恒定推力。经历时间t1,舰载机运行至B处,速度达到v1,电磁弹射系统关闭。舰载机继续以额定功率加速运行至C处,经历的时间为t2,速度达到v2。此后,舰载机进入倾斜曲面轨道,在D处离开航母起飞。请根据以上信息求解下列问题。
(1)电磁弹射系统关闭的瞬间,舰载机的加速度。
(2)水平轨道AC的长度。
(3)若不启用电磁弹射系统,舰载机在A处以额定功率启动,经历时间t到达C处,假设速度大小仍为v2,则舰载机的质量应比启用电磁弹射系统时减少多少?(该问AC间距离用x表示。)
23.(1)根据功率表达式可得 ①(2分)
由牛顿第二运动定律 ②(2分) 得 ③(1分)
(2)舰载机在A处以额定功率启动,同时开启电磁弹射系统,它能额外给舰载机提供水平向右、大小为F的恒定推力。经历时间t1,舰载机运行至B处,速度达到v1,由动能定理
④(2分)
电磁弹射系统关闭。舰载机继续以额定功率加速运行至C处,经历的时间为t2,速度达到v2。同理得 ⑤(2分)
舰载机总位移 ⑥(1分)
联④⑤⑥得 ⑦(2分)
(3)全过程,根据动能定理有 ⑧(2分)
应减少的质量 ⑨
得⑩(2分)
18.如图甲,ACE和BDF两根光滑的导轨弯曲成相同的形状,平行置于水平地面上,AC与BD垂直地面,CE和DF与地面成30°角,两根导轨间的距离为L导轨电阻不计,整个空间处于垂直CDEF平面向上的匀强磁场中,磁感应强度为B。两根相同的导体棒,质量均为m,电阻均为R,与导轨垂直放置,与导轨接触良好,其中导体棒ab沿斜面匀速运动,刚好能使导体棒cd静止在图示位置。
(1)图乙中已画出了cd导体棒的部分受力示意图,请在图乙虚线中画出导体棒cd受到的安培力的示意图,并求出安培力的大小。
(2)判断通过导体棒cd的电流方向,并求出电流大小。
(3)求导体棒ab匀速运动的速度大小和方向。
(4)求外力的大小
23.(16分)如图甲所示,PQNM是表面粗糙、倾角为θ=37°的绝缘斜面,abcd是质量m=0.5kg、总电阻R=0.5Ω、边长L=0.5m的正方形金属线框,线框的匝数N=5。将线框放在斜面上,不加磁场时两者之间的最大静摩擦力为3.7N。已知线框与斜面间的动摩擦因数μ=0.8。在OO′NM的长方形区域加上垂直斜面方向的匀强磁场,使线框面积的五分之二处于磁场中,磁场的磁感应强度B随时间t变化的图象如图乙所示(g取10m/s2,sin37°=0.6,cos37°=0.8)。
(1)试根据图乙求出B随时间t变化的函数关系式。
(2)在t=0时刻线框是否会开始沿斜面运动?通过必要的计算过程和文字说明得出合理的结论。
19.如图所示,直角坐标系的ox轴水平,oy轴竖直;M点坐标为(-0.3m,0)、N点坐标为(-0.2m,0);在 -0.3m ≤ X ≤ -0.2m的长条形范围内存在竖直方向的匀强电场E0;在X ≥0的范围内存在竖直向上的匀强电场,场强为E=20N/C;在第一象限的某处有一圆形的匀强磁场区,磁场方向垂直纸面向外,磁感应强度B=2.5T。有一带电量q =+1.0×10-4C、质量m=2×10-4kg的微粒以v0=0.5m/s的速度从M点沿着x轴正方向飞入电场,恰好垂直经过y轴上的P点(图中未画出, yP>0),而后微粒经过第一象限某处的圆形磁场区,击中x轴上的Q点,速度方向与x轴正方向夹角为600。g取10m/s2。求:
(1)场强E0的大小和方向;
(2)P点的坐标及圆形磁场区的最小半径r;
(3)微粒从进入最小圆形磁场区到击中Q点的运动时间(可以用根号及π等表示)
y
Q
22、① ACDF (2分)
②
(2分)
(2分)
③
(2分)
④ 1.0 (2分)
23、(16分)ks5u
(1)车速v1=40 km/h= m/s,由于在反应时间内汽车仍匀速行驶,根据车速v和反应距离s可计算驾驶员的反应时间Δt== s=0.90 s (4分)
(2)如果驾驶员的反应时间相同,由=可计算出表格中A的数据为
s3==10× m=20 m (4分)
(3)如果路面情况相同,假设阻力与车重的比值为μ,则
v2=2ax (1分)
μmg=ma (1分)
μ= (1分)
将v1=40 km/h、x1=10 m、g=10 m/s2代入可得:μ=0.62 (1分)
(4)车速v=72 km/h=20 m/s,反应时间Δt=0.90 s+0.2 s=1.1 s
驾驶员的反应距离s=vΔt=20×1.1 m=22 m (1分)
刹车距离x===32.3 m (1分)
停车距离L=s+x=54.3 m
由于停车距离L>52m,故会发生交通事故
17.(17分)(1)E0方向向上------------------①
微粒穿过MN、NO区的时间分别为t1、t2,则---------②
---------③
过MN区加速度a竖直向上,速度变化量大小为Δv:---------④
过NO区:-----------⑤ 且qE0-mg=ma-----------⑥
由① ~ ⑥得E0=60N/C------------⑦
(2)过N界偏移 ------⑧
--------⑨
则----⑩
由qE=mg------(11)得微粒飞入磁场做速度为v0的匀速圆周运动,设轨道半径为R,
由-----(12)
--------------(13)
由几何关系得最小磁场区半径r=AC/2=R/2=0.2m-----------------------------(14)
第17题图
A
CA
(3)磁场中运动时间-------------------------(15)
C~Q时间------(16)
由几何关系得CQ=-----(17)
-------------(18)
评分标准:每个式子各1分,共18分
展开阅读全文