1、期中检测题时间:100分钟满分:120分一、选择题(每小题3分,共30分)1(2015南通)下列图形中既是轴对称图形又是中心对称图形的是(A)2实数a,b,c在数轴上对应的点如图,则下列式子中正确的是(B)AacbcBacbcCacbcD.3等腰三角形一边长为6,另一边长为11,则周长为(D)A17 B17或23 C23 D23或284有一个三角形花坛,它的三边长分别为5,12,13,则花坛的面积为(A)A30 B78 C37.5 D405(2015哈尔滨)如图,在RtABC中,BAC90,将ABC绕点A顺时针旋转90后得到的ABC(点B的对应点是点B,点C的对应点是点C),连接CC.若CCB
2、32,则B的大小是(C)A32 B64 C77 D87,第5题图),第8题图),第9题图)6若代数式1的值不小于代数式1的值,则(B)Ax17 Bx17 Cx17 Dx277(2015庆阳)已知点P(a1,1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是(C)8如图,已知MN是ABC的边AB的垂直平分线,垂足为点F,CAB的平分线AD交BC于点D,且MN与AD交于点O,连接BO并延长交AC于点E,则下列结论中不一定成立的是(B)ACADBAD BOEOF CAFBF DOAOB9将一副三角板如图甲摆放,A45,D30,斜边AB6,DC7,把DCE绕点C顺时针旋转15得到D1C
3、E1(如图乙),此时AB与CD1交于点O,则线段AD1的长为(B)A3 B5 C4 D.10若关于x的一元一次不等式组有解,则m的取值范围为(C)Am Bm Cm Dm二、填空题(每小题3分,共24分)11当实数a0时,6a_6a.(填“”或“”)12如图,将边长为10 cm的等边三角形ABC沿BC向右平移6 cm,得到DEF,DE交AC于M,则MEC的周长为_12_cm_,第12题图),第14题图),第15题图),第18题图)13已知b0,2b1,则a的取值范围是_4a2_14如图,在ABC中,BI,CI分别平分ABC,ACF,直线DE过点I,且DEBC,BD8 cm,CE5 cm,则DE_
4、3_cm_15如图,OAOB,RtCDE的边CD在OB上,ECD45,CE4,若将CDE绕点C逆时针旋转75,点E的对应点N恰好落在OA上,则OC的长度为_2_16在ADB和ADC中,下列条件:BDDC,ABAC;BC,BADCAD;BC,BDDC;ADBADC,BDDC.其中能得出ADBADC的是_(填序号)17某歌碟出租店有两种租碟方式:一种是用会员卡租碟,办会员卡每月10元,租碟每张6角;另一种是零星租碟每张1元若小强经常来此店租碟,当每月租碟至少_26_张时,用会员卡租碟更合算18如图,在直角坐标系中,已知点A(3,0),B(0,4),对OAB连续作旋转变换,依次得到1,2,3,4,则
5、2016的直角顶点的坐标为_(8064,0)_三、解答题(共66分)19(8分)解不等式组并写出其整数解解:x2,其整数解为0,120.(8分)如图,在平面直角坐标系中,图形,关于点P中心对称(1)画出对称中心P,并写出点P的坐标;(2)将图形向下平移4个单位长度,画出平移后的图形,并判断图形与图形的位置关系(直接写出结果)解:(1)图略,点P的坐标为(1,5)(2)图略,图形与图形关于Q(1,3)中心对称21(8分)如图,AD平分BAC,DEAB于E,DFAC于F,且DBDC,求证:EBFC.解:AD平分BAC,DEAB于E,DFAC于F,DEDF,在RtDBE和RtDCF中,DEDF,DB
6、DC,RtDBERtDCF(HL),EBFC22(10分)如图,ABC中,C90,DE垂直平分AB,交BC于点D,连接AD,若AC8,DC:AD3:5.求:(1)CD的长;(2)DE的长解:(1)在RtACD中,C90,DC:AD3:5,设CD3k,AD5k,AC4k8,k2,CD3k6(2)DE垂直平分AB,AEBE,BDAD5k10,BCBDCD16,在ABC中,C90,AB8,BE4,在RtBDE中,DE223(10分)如图,OAOB,OA45海里,OB15海里,我国某岛位于O点,我国渔政船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向该岛所在地点O,我国渔政船立即从B处
7、出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)连接AB,作AB的垂直平分线与OA交于点C,点C即为所求(2)连接BC,设BCx海里,则CAx海里,OC(45x)海里,在RtOBC中,BO2OC2BC2,即152(45x)2x2,解得x25,则我国渔政船行驶的航程BC为25海里24(10分)某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款某校有4名老师与若干名(
8、不少于4人)学生听音乐会(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案解:(1)按优惠方案1可得y1204(x4)5,即y15x60(x4);按优惠方案2可得y2(5x204)90%,即y24.5x72(x4)(2)因为y1y20.5x12(x4),当y1y20时,得0.5x120,解得x24,当购买24张票时,两种优惠方案付款一样多;当y1y20时,得0.5x120,解得x24,4x24时,y1y2,优惠方案1付款较少;当y1y20时,得0.5x120,解得x24,当x24时,y1y2,优惠方案2付款较少2
9、5(12分)已知ABC是等边三角形,将一块含有30角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上(1)利用图1证明:EF2BC;(2)在三角板的平移过程中,在图2中线段EBAH是否始终成立(假定AB,AC与三角板斜边的交点为G,H)?如果成立,请证明;如果不成立,请说明理由解:(1)ABC是等边三角形,ACB60,ACBC,F30,CAF603030,CAFF,CFAC,CFACBC,EF2BC(2)成立证明:ABC是等边三角形,ACB60,ACBC,F30,CHF603030,CHFF,CHCF,EF2BC,BECFBC,又AHCHAC,ACBC,AHBE