1、义务教育课程标准实验教科书 数 学 教案 九年级 下册 新邵县酿溪中学 授课教师 侯光社 授课班级 、班 160目 录湘教版九年级数学下册教学计划4第1章 二次函数11.1 二次函数11.2 二次函数的图象与性质5第1课时 二次函数y=ax2(a0)的图象与性质5第2课时 二次函数y=ax2(a0)的图象与性质9第3课时 二次函数y=a(x-h)2的图象与性质13第4课时 二次函数y=a(x-h)2+k的图象与性质17第5课时 二次函数y=ax2+bx+c的图象与性质21*1.3 不共线三点确定二次函数的表达式261.4 二次函数与一元二次方程的联系301.5 二次函数的应用34第1课时 二次
2、函数的应用(1)34第2课时 二次函数的应用(2)38章末复习43第2章 圆482.1 圆的对称性482.2 圆心角、圆周角532.2.1 圆心角532.2.2 圆周角57第1课时 圆周角(1)57第2课时 圆周角(2)61*2.3 垂径定理652.4 过不共线三点作圆692.5直线与圆的位置关系732.5.1直线与圆的位置关系732.5.2 圆的切线77第1课时 圆的切线的判定77第2课时 圆的切线的性质812.5.3切线长定理862.5.4 三角形的内切圆902.6 弧长与扇形面积94第1课时 弧长及其相关量的计算94第2课时 扇形面积982.7 正多边形与圆102章末复习105第3章 投
3、影与视图1113.1 投影111第1课时 平行投影与中心投影111第2课时 正投影1153.2 直棱柱、圆锥的侧面展开图1203.3 三视图124第1课时 几何体的三视图124第2课时 由三视图确定几何体128章末复习132第4章 概率1374.1 随机事件与可能性1374.2 概率及其计算1414.2.1 概率的概念1414.2.2 用列举法求概率145第1课时 用列表法求概率145第2课时 用树状图法求概率1494.3 用频率估计概率153章末复习157湘教版九年级数学下册教学计划一、课程目标(一)、本学段课程目标知识技能1体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方
4、程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。2探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;3体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。数学思考1通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,
5、初步建立几何直观。2了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。3体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力。4能独立思考,体会数学的基本思想和思维方式。问题解决1初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。2经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。3在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。4能针对他人所提的问题进行反思,初
6、步形成评价与反思的意识。情感态度1积极参与数学活动,对数学有好奇心和求知欲。2感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。3在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。4敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。(二)、本学期课程目标教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得
7、数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。二、学情分析本学期我担任九年级班的数学教学工作。共有学生36人,上学期期末考试成绩不理想,落后面比较大,学习风气还欠浓厚。正如人们所说的“现在的学生是低分低能”,我深感教育教学的压力很大,在本学期的数学教学中务必精耕细作。使用的教材是新课程标准实验教材湘教版数学九年级下册,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中具有创新意识、每一个教学环节都必须巧做安排。三、教材分析本册教材共分
8、四章,二次函数、圆、投影与视图、概率。这些内容都是初中代数、几何及概率统计中的重要内容,起作承上启下的作用,它既是对已学过的知识的巩固和加深,又是为今后学习奠定基础。四、具体措施1、认真研读新课程标准,钻研新教材,根据新课程标准及教材适度安排教学内容,认真上课,批改作业,认真辅导,认真制作测试试卷。2、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。3、引导学生积极参与知识的构建,营造自主、探究、合作、交流、分享发现快乐的课堂。4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一
9、,培养学生的发散思维,让学生处于一种思如泉涌的状态。5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。7、开展分层教学,布置作业设置a、b、c三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好各个层次的学生,使他们都得到发展。8、把辅优补潜工作落到实处,进行个别辅导。第
10、1章 二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙
11、的长度x(m)的关系式是S=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:二次函数中二
12、次项系数不能为0.在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=;(5)y=5-x2+x.【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m2-m)x2+
13、mx+(m+1)(m是常数),当m为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由 得 ,m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数.(2)由m2-m0得m0且m1,当m0且m1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. B.y=3x3+2x2 C.y=(x-2)2-x3 D.
14、2.二次函数y=2x(x-1)的一次项系数是( )A.1 B.-1 C.2 D.-23.若函数 是二次函数,则k的值为( )A.0 B.0或3 C.3 D.不确定4.若y=(a+2)x2-3x+2是二次函数,则a的取值范围是 .5.已知二次函数y=1-3x+5x2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与x之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y关于x的函数关系式;(2)
15、试求自变量x的取值范围;(3)求当圆的半径为2时,剩余部分的面积(取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a-2 5.5,-3,1 6. 是7.(1)y=25-x2=-x2+25.(2)0x52.(3)当x=2时,y=-4+25-43.14+25=12.4412.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归
16、纳.1.教材P4第13题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y=ax2(a0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a0)图象的作法和性质的过程,获得利用图象研究函数的经验
17、,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢?【教学说明】 略;列表、描点、连线.二、思考探究,获取新知探究1 画二次函数y=ax2(a0)的图象.画二次函数y=ax2的图象.【教学
18、说明】要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.从列表和描点中,体会图象关于y轴对称的特征.强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2
19、y=ax2(a0)图象的性质在同一坐标系中,画出y=x2, ,y=2x2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y随x的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax2(a0)图象的性质1.图象开口向上.2.对称轴是y轴,顶点是坐标原点,函数有最低点.3.当x0时,y随x的增大而增大,简称右升;当x0时,y随x的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数是关于x的
20、二次函数.(1)求k的值.(2)k为何值时,抛物线有最低点,最低点是什么?在此前提下,当x在哪个范围内取值时,y随x的增大而增大?【分析】此题是考查二次函数y=ax2的定义、图象与性质的,由二次函数定义列出关于k的方程,进而求出k的值,然后根据k+20,求出k的取值范围,最后由y随x的增大而增大,求出x的取值范围.解:(1)由已知得 ,解得k=2或k=-3.所以当k=2或k=-3时,函数是关于x的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+20.由(1)知k=2,最低点是(0,0),当x0时,y随x的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x0时,y
21、值随x值增大而减小的是( )A.y=x2 B.y=x-1 C. D.y= 2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则( )A.y1y2y3 B.y1y3y2 C.y3y2y1 D.y2y1y33.抛物线y=x2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x0时,y随x的增大而 ;当x0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教
22、师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴, ,3,减小,增大4.解:依题意得:BC=AD=8,BCx轴,且抛物线y=ax2上的点B,C关于y轴对称,又BC与y轴交于点E(0,6),B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a0)图象的画法,再由图象观察、探究二次函数y=ax2
23、(a0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数y=ax2(a0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】会画y=ax2(a0)的图象;理解、掌
24、握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y= x2的图象,结合y= x2的图象,谈谈二次函数y=ax2(a0)的图象具有哪些性质?2.你能画出y=- x2的图象吗?二、思考探究,获取新知探究1 画y=ax2(a0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=- x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y= x2与y=- x2有何关系?归纳:y= x2与y=- x2二者图象形状完全相同,只是开口方
25、向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2 二次函数y=ax2(a0)性质问:你能结合y=- x2的图象,归纳出y=ax2(a0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x0时,y随x的增大而减小,简称右降,当x0时,y随x的增大而增大,简称左升.探究3 二次函数y=ax2(a0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是 ,顶点是 ,当a0时抛物线的开口向 ,顶
26、点是抛物线的最 点,a越大,抛物线开口越 ;当a0时,抛物线的开口向 ,顶点是抛物线的最 点,a越大,抛物线开口越 ,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:函数y=(-x)2的图象是 ,顶点坐标是 ,对称轴是 ,开口方向是 .函数y=x2,y=x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:抛物线,(0,0),y轴,向上;根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错
27、误.抛物线y=ax2中,当a0时,开口向上;当a0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:点(1,-1)在抛物线y=ax2上,-1=a12,a=-1,抛物线为y=-x2.当y=-4时,有-4=-x2,x=2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是( )A.抛物线y=x2和y=-x2有共同的顶点
28、和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax2与一次函数y=-ax(a0)在同一坐标系中的图象大致是( )3.二次函数,当x0时,y随x的增大而减小,则m= .4.已知点A(-1,y1),B(1,y2),C(a,y3)都在函数y=x2的图象上,且a1,则y1,y2,y3中最大的是 .5.已知函数y=ax2经过点(1,2).求a的值;当x0时,y的值随x值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D
29、2.B 3.2 4.y3 5.a=2 当x0时,y随x的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax2(a0)图象的性质;(2)y=ax2(a0)关系式的确定方法.1.教材P10第12题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a0)的图象和性质,从而得出y=ax2(a0)的图象和性质,进而得出y=ax2(a0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2
30、的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=x2与y= (x-1)2的图象,完成下
31、表.2.二次函数y= (x-1)2的图象与y=x2的图象有什么关系?3.对于二次函数 (x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表. 三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.水平移后的抛物
32、线l的解析式;若点B(x1,y1),C(x2,y2)在抛物线l上,且-x1x2,试比较y1,y2的大小.解:y=x+1,令y=0,则x=-1,A(-1,0),即抛物线l的顶点坐标为(-1,0),又抛物线l是由抛物线y=-2x2平移得到的,抛物线l的解析式为y=-2(x+1)2.由可知,抛物线l的对称轴为x=-1,a=-20,当x-1时,y随x的增大而减小,又-x1x2,y1y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是( )A.-1 B.1 C.0 D.没有最小值2.抛物线y=-3(x+1)2
33、不经过的象限是( )A.第一、二象限 B.第二、四象限 C.第三、四象限 D.第二、三象限3.在反比例函数y= 中,当x0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是( )4.(1)抛物线y=x2向 平移 个单位得抛物线y=(x+1)2;(2)抛物线 向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1
34、.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-(x+2)2 (2)略 (3)当x-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向
35、左右平移;从中领会数形结合的数学思想.第4课时 二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归
36、纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:y=ax2,y=a(x-h)2,(a0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?如何由y=ax2(a0)的图象平移得到y=a(x-h)2的图象?猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:y=-
37、(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?将抛物线y=-x2向左平移1个单位,再向下平移1个单位得抛物线y=-(x+1)2-1.2.同学们讨论回答:一般地,当h0,k0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2 二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a0时,开口向,当a0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三
38、、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式. 【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式. 解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及
39、大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,点(0,2)在图象上,144a+2
40、0=2,a=- ,y=- (x-12)2+20.当x=20时,y=-(20-12)2+20=12,即抛物线过点(20,12),该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须( )A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则ABC的周长为( )A.4 B.4+4 C.12 D.2+43.函
41、数y=ax2-a与y=ax-a(a0)在同一坐标系中的图象可能是( )4.二次函数y=-2x2+6的图象的对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评
42、:二次函数y=a(x-h)2+k的图象与性质;如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P15第13题.2.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时 二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二
43、次函数y=ax2+bx+c(a0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】用配方法求y=ax2+bx+c的顶点坐标;会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y