资源描述
对数与对数函数同步练习
一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知,那么用表示是( )
A、 B、 C、 D、
2、,则的值为( )
A、 B、4 C、1 D、4或1
3、已知,且等于( )
A、 B、 C、 D、
4、如果方程的两根是,则的值是( )
A、 B、 C、35 D、
5、已知,那么等于( )
A、 B、 C、 D、
6、函数的图像关于( )
A、轴对称 B、轴对称 C、原点对称 D、直线对称
7、函数的定义域是( )
A、 B、
C、 D、
8、函数的值域是( )
A、 B、 C、 D、
9、若,那么满足的条件是( )
A、 B、 C、 D、
10、,则的取值范围是( )
A、 B、 C、 D、
11、下列函数中,在上为增函数的是( )
A、 B、
C、 D、
12、已知在上有,则是( )
A、在上是增加的 B、在上是减少的
C、在上是增加的 D、在上是减少的
二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)
13、若 。
14、函数的定义域是 。
15、 。
16、函数是 (奇、偶)函数。
三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.)
17、已知函数,判断的奇偶性和单调性。
18、已知函数,
(1)求的定义域;
(2)判断的奇偶性。
19、已知函数的定义域为,值域为,求的值。
对数与对数函数同步练习参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
D
D
C
C
A
C
C
A
D
C
二、填空题
13、12 14、 由 解得 15、2
16、奇,为奇函数。
三、解答题
17、(1),
∴是奇函数
(2),且,
则,
∴为增函数。
18、(1)∵,∴,又由得, ∴ 的定义域为。
(2)∵的定义域不关于原点对称,∴为非奇非偶函数。
19、由,得,即
∵,即
由,得,由根与系数的关系得,解得。
展开阅读全文