收藏 分销(赏)

第三次月考化学试题.doc

上传人:仙人****88 文档编号:5642363 上传时间:2024-11-15 格式:DOC 页数:4 大小:424KB
下载 相关 举报
第三次月考化学试题.doc_第1页
第1页 / 共4页
第三次月考化学试题.doc_第2页
第2页 / 共4页
第三次月考化学试题.doc_第3页
第3页 / 共4页
第三次月考化学试题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2013年华约自主招生数学试题解析1.设,且中元素满足:任意一个元素的各数位的数字互不相同;任意一个元素的任意两个数位的数字之和不等于9;(1)求中的两位数和三位数的个数;(2)是否存在五位数,六位数?(3)若从小到大排列中元素,求第1081个元素.解析:(配对法)将0,1,9这10个数字按照和为9进行配对:(0,9),(1,8),(2,7),(3,6),(4,5).中元素的每个数位只能从上面五对数中每对至多取一个数构成.(1)两位数有个;三位数有个;(2)存在五位数,只需从上述五个数对中每对取一个数即可构成符合条件的五位数;不存在六位数,由抽屉原理易知,若存在,则至少要从一个数对中取出两个数

2、,则该两个数字之和为9,与中任意一个元素的任意两个数位的数字之和不等于9矛盾,因此不存在六位数.(3)四位数共有个,因此第1081个元素是四位数,且是第577个四位数,我们考虑千位,千位1,2,3的四位数有个,因此第1081个元素是4012.2.已知,求.解析:由,平方相加得,另一方面由得,由得,除以得,因此.3.点在上,点在上,其中,且在轴同侧.(1)求中点的轨迹;(2)曲线与抛物线相切,求证:切点分别在两条定直线上,并求切线方程.解析:(1)设,则,由得,即,又,于是的轨迹方程为,于是中点的轨迹的焦点为,实轴长为2的双曲线.(2)将与联立得,曲线与抛物线相切,故,又因为,所以,且,因此两切

3、点分别在定直线上,两切点为,于是在处的切线方程分别为,即,在处的切线方程分别为,即.4.7个红球,8个黑球,一次取出4个.(1)求恰有一个红球的概率;(2)取出黑球的个数为,求的分布列和期望;(3)取出4个球同色,求全为黑色的概率.解析:(1)恰有一个红球的概率为;(2)的所有可能取值为0,1,2,3,4,即的分别列为01234所以.(事实上由超几何分布期望公式可以直接得出期望为,无需繁杂计算)(3)取出4个球色,全为黑色的概率为.5.数列各项均为正数,且对任意满足.(1)求证:对任意正数,存在,当时有;(2)设是前项和,求证:对任意,存在,当时有.(1)证明:因为对任意满足,所以,又因为,所

4、以,所以,故对任意正数,存在,当时有.(2)由得所以,所以,。由(1)有得 。由得。所以对任意,存在,当时有.6.已知是互不相等的正整数,求.解析:本题等价于求使为整数的正整数,由于是互不相等的正整数,因此,不失一般性不妨设,则于是,结合为正整数,从而.当时,即于是,所以,但另一方面,是正整数且,矛盾,不合题意.当,此时,所以,即,所以,。代入得,又,经检验仅有符合题意.因此所求为。7.已知;(1)求证:当时;(2)数列满足,求证:数列递减且.证明:(1)当时在递减,所以.(2)由,因为,所以即,所以数列递减,下列证明,用数学归纳法证明,设,则,由(1)知当时,所以,所以在递增,由归纳假设得,要证明只需证明,即,故只需证明,考虑函数,因为当时,所以,所以在递增,因为,所以,即,由归纳法知,对任意正整数成立.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服