资源描述
北师大版八年级下册数学第六章《平行四边形》单元测试
一、精心选一选
1、能够判定一个四边形是平行四边形的条件是( )
A.一组对角相等 B.两条对角线互相平分
C.两条对角线互相垂直 D.一对邻角的和为180°
2、如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66° B.104° C.114° D.124°
3、如图,是的中位线,若,则的长为( )
4、如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是( )
A. 3 B. 4 C. 5 D. 6
5、如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是( )
6、如图,在△ABC中,AB=4,AC=3,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )
[来源:学|科|网Z|X|X|K]
7、如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
8、如图,E是平行四边形内任一点,若S□ABCD=8,则图中阴影部分的面积是( )
A.3 B.4 C.5 D.6[来源:学#科#网Z#X#X#K]
9、.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为( )
A. 1620° B. 1800° C. 1980° D. 2160°
10、如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )
A.②③ B.②⑤ C.①③④ D.④⑤
[来源:Zxxk.Com]
二、细心填一填
11、如图,在平行四边形ABCD中,对角线AC上有E、F两点,要使四边形BEDF是平行四边形,还需要增加一个条件是 .(填上一个即可).
12、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.
13、如图是由射线如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4=____°.
14、平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为________ cm. [来源:Zxxk.Com]
15、如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,AB+AD=20,则□ABCD的面积为___________.
16、如图,在四边形ABCD中,P是BC边上一点,∠A=∠B=90º,E为AB的中点,连接DP,EP.若FG为△DPE的中位线,AB=AD=4,则FG=___________.
三、 耐心做一做
17、在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,
证明:DE=BF.
18、如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
19、如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为F,连接、.
求证:.
20、如图,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.
(1)求证:四边形BDEF是平行四边形;
(2)线段BF,AB,AC之间具有怎样的数量关系?证明你所得到的结论.
21、如图,在△ABC中,D,E,F分别是AB,BC, CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.
22、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.
[来源:学科网]
23、如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.
24、如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
25、如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).
(1)求当t为多少时,四边形PQAB为平行四边形?
(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;
(3)直接写出在(2)的情况下,直线PQ的函数关系式.
展开阅读全文