收藏 分销(赏)

圆周运动(教师).doc

上传人:仙人****88 文档编号:5560673 上传时间:2024-11-13 格式:DOC 页数:5 大小:440.51KB
下载 相关 举报
圆周运动(教师).doc_第1页
第1页 / 共5页
圆周运动(教师).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
圆周运动(教师版) 1、如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是(ACD ) A.小球能够通过最高点时的最小速度为0 B.小球能够通过最高点时的最小速度为 C.如果小球在最高点时的速度大小为2,则此时小球对管 道的外壁有作用力 D.如果小球在最低点时的速度大小为,则小球通过最高点时与管道间无相互作用力 2、长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法中正确的是 (BCD) A.v的极小值为 B.v由零逐渐增大,向心力也增大 C.当v由逐渐增大时,杆对小球的弹力逐渐增大 D.当v由逐渐减小时,杆对小球的弹力逐渐增大 3、有一种叫“飞椅”的游乐项目,示意图如图所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系. 答案 ω= 解析 由向心力公式F =mω2r得 mgtanθ=mω2(r+Lsinθ),则ω= 4、如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。现给小球一冲击,使它以初速度沿环上滑,已知。求:(1)若金属环光滑,小球运动到环的最高点时,环对小球作用力的大小和方向。 O R R (2)若金属环粗糙,小球运动到环的最高点与环恰无作用力,小球从最低点运动到最高点的过程中克服摩擦力所做的功。 解:(1)设小球到最高点速度 则: (3分) 在最高点 (2分) 方向竖直向下 (1分) (2)小球在最高点与环作用力恰为0时,速度为 则 (3分) 从最低点最高点:— (3分) 5、如图所示,两绳系一质量为m=0.1kg的小球,两绳的另一端分别固定于轴的AB两处,上面绳长l=2m,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力? B A m 解:设两细线都拉直时,A、B绳的拉力分别为、,小球的质量为m,A线与竖直方向的夹角为,B线与竖直方向的夹角为,受力分析,由牛顿第二定律得: 当B线中恰无拉力时, ① ② 由①、②解得rad/s 当A线中恰无拉力时, ③ ④ (3分) 由③、④解得rad/s 所以,两绳始终有张力,角速度的范围是rad/s rad/s 6、某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 ) 答案:2.53s 解析:本题考查平抛、圆周运动和功能关系。 设赛车越过壕沟需要的最小速度为v1,由平抛运动的规律 解得 设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v2,最低点的速度为v3,由牛顿第二定律及机械能守恒定律 解得 m/s 通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是 m/s 设电动机工作时间至少为t,根据功能原理 由此可得 t=2.53s 7、过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位 数字。试求 (1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B、C间距应是多少; (3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。 答案:(1)10.0N;(2)12.5m(3) 当时, ;当时, 解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理 ① 小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律 ② 由①②得 ③ (2)设小球在第二个圆轨道的最高点的速度为v2,由题意 ④ ⑤ 由④⑤得 ⑥ (3)要保证小球不脱离轨道,可分两种情况进行讨论: I.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v3,应满足 ⑦ ⑧ 由⑥⑦⑧得 II.轨道半径较大时,小球上升的最大高度为R3,根据动能定理 解得 为了保证圆轨道不重叠,R3最大值应满足 解得 R3=27.9m 综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 或 当时,小球最终焦停留点与起始点A的距离为L′,则 当时,小球最终焦停留点与起始点A的距离为L〞,则
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服