收藏 分销(赏)

天津市七年级数学下册相期末压轴题易错题考试试题.doc

上传人:a199****6536 文档编号:5547539 上传时间:2024-11-13 格式:DOC 页数:29 大小:2.35MB
下载 相关 举报
天津市七年级数学下册相期末压轴题易错题考试试题.doc_第1页
第1页 / 共29页
天津市七年级数学下册相期末压轴题易错题考试试题.doc_第2页
第2页 / 共29页
天津市七年级数学下册相期末压轴题易错题考试试题.doc_第3页
第3页 / 共29页
天津市七年级数学下册相期末压轴题易错题考试试题.doc_第4页
第4页 / 共29页
天津市七年级数学下册相期末压轴题易错题考试试题.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、一、解答题1如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存在怎样的数量关系,并说明理由解析:(1)(2,6);(2)(,0)或(9,0);(3)OCD+DBA=BDC或OCD-DBA=BDC【分析】(1)由点的坐标的特点,确定出FC=2,OF=6,得出C(2,6);(2)分点D在线段OA和在OA延长线两种情况进行计算;(3)分点D在线段OA上时,OCD+DBA=BDC和在OA延长线OCD-DBA

2、=BDC两种情况进行计算【详解】解:(1)如图,过点C作CFy轴,垂足为F,过B作BEx轴,垂足为E,A(6,0),B(8,6),FC=AE=8-6=2,OF=BE=6,C(2,6);(2)设D(x,0),当ODC的面积是ABD的面积的3倍时,若点D在线段OA上,OD=3AD,6x=36(6-x),x=,D(,0);若点D在线段OA延长线上,OD=3AD,6x=36(x-6),x=9,D(9,0);(3)如图,过点D作DEOC,由平移的性质知OCABOCABDEOCD=CDE,EDB=DBA若点D在线段OA上,BDC=CDE+EDB=OCD+DBA,即OCD+DBA=BDC;若点D在线段OA延

3、长线上,BDC=CDE-EDB=OCD-DBA,即OCD-DBA=BDC【点睛】此题是几何变换综合题,主要考查了点三角形面积的计算方法,平移的性质,平行线的性质和判定,解本题的关键是分点D在线段OA上,和OA延长线上两种情况2在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来第一组:、;第二组:、(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合)当点在线段上运动时,连接、,补全图形,用等式表示、之间的数量关系,并证明当与面积相等时,求点的坐标解析:(1)ACDE;(2)CAMMDEAMD,证明见解析;点M的坐标为(

4、0,)或(0,)【分析】(1)根据两点的纵坐标相等,连线平行x轴进行判断即可;(2)过点M作MNAC,运用平行线的判定和性质即可;设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可【详解】解:(1)A(3,3)、C(4,3),ACx轴,D(2,1)、E(2,1),DEx轴,ACDE;(2)如图,CAMMDEAMD理由如下:过点M作MNAC,MNAC(作图),CAMAMN(两直线平行,内错角相等),ACDE(已知),MNDE(平行公理推论),MDENMD(两直线平行,内错角相等),CAMMDEAMNNMDAMD(等量代

5、换)由题意,得:AC7,DE4,设M(0,m),(i)当点M在线段OB上时,BM3m,FMm1,SACMACBM7(3m),SDEMDEFM4(m1)2m2,SACMSDEM,2m2,解得:m,M(0,);(ii)当点M在线段OB的延长线上时,BMm3,FMm1,SACMACBM7(m3),SDEMDEFM4(m1)2m2,SACMSDEM,2m2,解得:m,M(0,);综上所述,点M的坐标为(0,)或(0,)【点睛】本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想3如图,在平面直角坐标系中,点,将线段AB进行平移,使点A

6、刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,连接交y轴于点C,交x轴于点D(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由解析:(1)向左平移4个单位,再向下平移6个单位,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可(2)利用分割法确定四边形的面积即可(3)分两种情形:点在点的上方,点在点的下方,分别求解即可【详解】解:(1)点,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,

7、再向下平移6个单位得到,(2)(3)连接,的中点坐标为在轴上,轴,同法可证,同法可证,当点在点的下方时,当点在点的上方时,【点睛】本题考查坐标与图形变化平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型4如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(3,2)(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BCCD”移动若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:当t=秒时,点P的横坐标与纵坐标互为相反数;求点P在运动过程中的坐标,(用

8、含t的式子表示,写出过程);当点P运动到CD上时,设CBP=x,PAD=y,BPA=z,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由解析:(1)(-2,0);(2)t=2;当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);能确定,z=x+y【分析】(1)根据平移的性质即可得到结论;(2)由点C的坐标为(-3,2)得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P

9、的坐标(-3,5-t);如图,过P作PFBC交AB于F,则PFAD,根据平行线的性质即可得到结论【详解】解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,点A的坐标是(1,0),点E的坐标是(-2,0);故答案为:(-2,0);(2)点C的坐标为(-3,2)BC=3,CD=2,点P的横坐标与纵坐标互为相反数;点P在线段BC上,PB=CD,即t=2;当t=2秒时,点P的横坐标与纵坐标互为相反数; 故答案为:2;当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);能确定, 如图,过P作PFBC交AB于F,则PFAD,1=CBP

10、=x,2=DAP=y,BPA=1+2=x+y=z,z=x+y【点睛】本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键5如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=_,b=_,BCD的面积为_;(2)如图2,若ACBC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当CPQ=CQP时,求证:BP平分ABC;(3)如图3,若ACBC,点E是点A与点B之间一动点,连接CE,CB始终平分ECF,当点E在点A与点B之间运动时,的

11、值是否变化?若不变,求出其值;若变化,请说明理由. 解析:-3 -4 6 【解析】分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明ACD=ACE,推出DCE=2ACD,再证明ACD=BCO,BEC=DCE=2ACD即可解决问题;详解:(1)解:如图1中,|a+3|+(b-a+1)2=0,a=-3,b=4,点C(0,-3),D(-4,-3),CD=4,且CDx轴,BCD的面积=121243=6;故答案为-3,-4,6(2)证明:如图2中,CPQ=CQP=OPB,ACBC,CBQ+CQP=90,又ABQ+CPQ=90,ABQ=CB

12、Q,BQ平分CBA(3)解:如图3中,结论: =定值=2理由:ACBC,ACB=90,ACD+BCF=90,CB平分ECF,ECB=BCF,ACD+ECB=90,ACE+ECB=90,ACD=ACE,DCE=2ACD,ACD+ACO=90,BCO+ACO=90,ACD=BCO,C(0,-3),D(-4,-3),CDAB,BEC=DCE=2ACD,BEC=2BCO,=2点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键6如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18(1)求点的坐标;(2

13、)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标解析:(1);(2)();(3)的值为4,点的坐标是【分析】(1)根据AOB的面积可求得OA的长,即可求得点A的坐标;(2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围;(3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F的坐标【详解】(1)B(-6,0

14、),OB=6,OA=6 ,(2),()(3),解得,则,连接,如图,点坐标为综上所述:的值为4,点的坐标是【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点7已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数解析:(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出

15、,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键8汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同

16、时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得

17、;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键9已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数解析:(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根

18、据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,

19、即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键10已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系解析:(1)65;(2);(3)2nM+BED=360【分析】(1)

20、首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两

21、直线平行同位角相等,内错角相等,同旁内角互补的性质11如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值解析:(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可

22、得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键12已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(

23、2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=36

24、0-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BO

25、E=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键13已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数解析:(1)见解析;(2)见解析;(3)40【分析】(1)根

26、据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PH

27、E2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键14已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,

28、过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系解析:(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2B

29、EG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型15在平面直角坐标系中,为坐标原点已知两点,且、满足;若四边形为平行四

30、边形,且 ,点在轴上(1)如图,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一;(2)如图,当从点出发,沿轴向上运动,连接、,、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况)解析:(1)1或3;(2)APD =CDP+PAB或APD=PAB-CDP,理由见解析【分析】(1)由非负数的性质求出a,b,得到AB的长,结合点C坐标求出平行四边形ABCD的面积,再根据的面积等于平行四边形面积的,列出方程,解之即可;(2)分点P在线段OC上和点P在OC的延长线上,两种情况,过P作PQAB,利用平行线的性质求解【详解】解:(1),a=-4,

31、b=3,即A(-4,0),B(3,0),AB=3-(-4)=7,又C(0,4),OC=4,平行四边形ABCD的面积=47=28,由题意可知:PC=2t,则OP=,的面积等于平行四边形面积的,解得:t=1或t=3,(2)如图,当点P在线段OC上时,过P作PQAB,则PQCD,CDP=DPQ,APQ=PAB,APD=DPQ+APQ=CDP+PAB;当点P在OC的延长线上时,过P作PQAB,则PQCD,CDP=DPQ,APQ=PAB,APD=APQ-DPQ=PAB-CDP【点睛】本题考查了坐标与图形,平行线的性质,解题的关键是掌握坐标和图形的关系,将坐标与线段长进行转化,同时适当添加辅助线,构造平行线

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服