资源描述
人教版七年级数学下册期末综合复习试卷(及答案)
一、选择题
1.1.96的算术平方根是()
A.0.14 B.1.4 C. D.±1.4
2.下列图中的“笑脸”,由如图平移得到的是( )
A. B. C. D.
3.平面直角坐标系中,点M(1,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个命题:①是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个
A.1 B.2 C.3 D.4
5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )
A.35° B.45° C.50° D.55°
6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )
A. B. C.2 D.3
7.如图,一条“U”型水管中AB//CD,若∠B=75°,则∠C应该等于( )
A. B. C. D.
8.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是( )
A. B. C. D.
九、填空题
9.=___.
十、填空题
10.在平面直角坐标系中,点与点关于轴对称,则的值是_____.
十一、填空题
11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.
十二、填空题
12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.一列数a1,a2,a3,…,an,其中a1=﹣1,a2=,a3=,…,an=,则a2=_____;a1+a2+a3+…+a2020=_____;a1×a2×a3×…×a2020=_____.
十五、填空题
15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.
十六、填空题
16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________.
十七、解答题
17.计算(1)
(2)
十八、解答题
18.已知m+n=2,mn=-15,求下列各式的值.
(1);
(2).
十九、解答题
19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据)
解:∵∠1=∠2(已知)
∴CF//BD( )
∴∠3+∠CAB=180°( )
∵∠3=∠C(已知)
∴∠C+∠CAB=180°(等式的性质)
∴AB//CD( )
∴∠4=∠EGA(两直线平行,同位角相等)
∵∠4=∠5(已知)
∴∠5=∠EGA(等量代换)
∴ED//FB( )
二十、解答题
20.如图,已知在平面直角坐标系中的位置如图所示.
(1)写出三个顶点的坐标;
(2)求出的面积;
(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的.
二十一、解答题
21.阅读下面的文字,解答问题:
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗?
事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:∵,即,∴的整数部分为2,小数部分为.
请解答:
(1)的整数部分是______ ,小数部分是______ .
(2)如果的小数部分为,的整数部分为,求的值.
二十二、解答题
22.求下图的方格中阴影部分正方形面积与边长.
二十三、解答题
23.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.
(1)如图1,若点E在线段AC上,求证:B+D=BED;
(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;
(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示).
二十四、解答题
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
二十五、解答题
25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.
(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;
(2)关于“准互余三角形”,有下列说法:
①在中,若,,,则是“准互余三角形”;
②若是“准互余三角形”,,,则;
③“准互余三角形”一定是钝角三角形.
其中正确的结论是___________(填写所有正确说法的序号);
(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案.
【详解】
解:∵,
∴1.96的算术平方根是1.4,
故选:B.
【点睛】
本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.D
【分析】
根据各个象限点坐标的符号特点进行判断即可得到答案.
【详解】
解:∵1>0,-5<0,
∴点M(1,-5)在第四象限.
故选D.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.
【详解】
64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.
故选:B.
【点睛】
本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.
5.A
【分析】
过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.
【详解】
解:过点E作EF∥AB,则EF∥CD,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.A
【分析】
根据计算程序图计算即可.
【详解】
解:∵当x=64时,,,2是有理数,
∴当x=2时,算术平方根为是无理数,
∴y=,
故选:A.
【点睛】
此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.
7.C
【分析】
直接根据平行线的性质即可得出结论.
【详解】
解:∵AB∥CD,∠B=75°,
∴∠C=180°-∠B=180°-75°=105°.
故选:C.
【点睛】
本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.
8.C
【分析】
求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.
【详解】
解:由题意A1(3,0
解析:C
【分析】
求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.
【详解】
解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,
可以看出,9=,15=,21=,
得到规律:点A2n+1的横坐标为,其中的偶数,
点A2n+1的纵坐标等于横坐标的相反数+3,
,即,
故A2021的横坐标为,A2021的纵坐标为,
∴A2021(3033,-3030),
故选:C.
【点睛】
本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.
九、填空题
9.13
【分析】
根据求解即可.
【详解】
解:,
故答案为:13.
【点睛】
题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.
解析:13
【分析】
根据求解即可.
【详解】
解:,
故答案为:13.
【点睛】
题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.
十、填空题
10.4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的
解析:4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.
十一、填空题
11.﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
解析:﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
十二、填空题
12.65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.
【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
解析:65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.
【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
∴∠3=∠2﹣∠4=115°﹣50°=65°.
故答案为:65°.
【点睛】
此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14., 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===
解析:, 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===2,
a4=﹣1,…,
∵2020÷3=673…1,
∴a1+a2+a3+…+a2020
=(﹣1++2)×673+(﹣1)
=×673+(﹣1)
=﹣
=,
a1×a2×a3×…×a2020
=[(﹣1)××2]673×(﹣1)
=(﹣1)673×(﹣1)
=(﹣1)×(﹣1)
=1,
故答案为:,,1.
【点睛】
本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键.
十五、填空题
15.(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),
解析:(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),B(2,0),
∴AB=2-1=1,
∴△ABC的面积=×1•h=2,
解得h=4,
点C在y轴正半轴时,点C为(0,4),
点C在y轴负半轴时,点C为(0,-4),
所以,点C的坐标为(0,4)或(0,-4).
故答案为:(0,4)或(0,-4).
【点睛】
本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.
十六、填空题
16.(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且
解析:(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.
【详解】
解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,
∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵2021÷4=505…1,
∴点P2021在第二象限,
∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),
∴点P2021(﹣506,505),
故答案为:(﹣506,505).
【点睛】
本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.
十七、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
十八、解答题
18.(1)-11;(2)68
【分析】
(1)直接利用完全平方公式将原式变形进而得出答案;
(2)直接利用完全平方公式将原式变形进而得出答案.
【详解】
解:(1)
=
=
=
=-11;
(2)
=
解析:(1)-11;(2)68
【分析】
(1)直接利用完全平方公式将原式变形进而得出答案;
(2)直接利用完全平方公式将原式变形进而得出答案.
【详解】
解:(1)
=
=
=
=-11;
(2)
=
=
=
=68
【点睛】
此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.
十九、解答题
19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平
解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平行),
(两直线平行,同旁内角互补),
(已知),
(等式的性质),
(同旁内角互补,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键.
二十、解答题
20.(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:
解析:(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:(1)由点在平面直角坐标系中的位置:;
(2)的面积为;
(3)如图所示,即为所求.
【点睛】
本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.
二十一、解答题
21.(1)4,;(2)1
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵<<,即4<<5
∴的整数部分为4,小数部分为−4.
(2),
解析:(1)4,;(2)1
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵<<,即4<<5
∴的整数部分为4,小数部分为−4.
(2),
∴.
∵,
∴,
∴.
【点睛】
此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.
二十二、解答题
22.8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边
解析:8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边长==.
【点睛】
本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.
二十三、解答题
23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行
解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.
(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.
(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.
【详解】
解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET+∠DET=∠B+∠D.
(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠DET-∠BET=∠D-∠B.
如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET-∠DET=∠B-∠D.
(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,
∵AB∥CD,
∴∠BMD=∠ABM+∠CDM,
∴m=2x+2y,
∴x+y=m,
∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,
∴∠BFD===.
【点睛】
本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.
二十四、解答题
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
二十五、解答题
25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角
解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.
【详解】
(1)证明:∵在中,,
∴,
∵BD是的角平分线,
∴,
∴,
∴是“准互余三角形”;
(2)①∵,
∴,
∴是“准互余三角形”,
故①正确;
②∵, ,
∴,
∴不是“准互余三角形”,
故②错误;
③设三角形的三个内角分别为,且,
∵三角形是“准互余三角形”,
∴或,
∴,
∴,
∴“准互余三角形”一定是钝角三角形,
故③正确;
综上所述,①③正确,
故答案为:①③;
(3)∠APB的度数是10°或20°或40°或110°;
如图①,
当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A=20°,
∴∠APB=110°;
如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
∴∠APB=40°;
如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠APB=20°;
如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
所以∠A=40°,
所以∠APB=10°;
综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.
【点睛】
本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.
展开阅读全文