收藏 分销(赏)

初中二年级课件.doc

上传人:仙人****88 文档编号:5507007 上传时间:2024-11-11 格式:DOC 页数:48 大小:2.23MB
下载 相关 举报
初中二年级课件.doc_第1页
第1页 / 共48页
初中二年级课件.doc_第2页
第2页 / 共48页
初中二年级课件.doc_第3页
第3页 / 共48页
初中二年级课件.doc_第4页
第4页 / 共48页
初中二年级课件.doc_第5页
第5页 / 共48页
点击查看更多>>
资源描述

1、第十六章 二次根式教材内容1本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式2本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础教学目标1知识与技能(1)理解二次根式的概念(2)理解(a0)是一个非负数,()2=a(a0),=a(a0)(3)掌握(a0,b0),=;=(a0,b0),=(a0,b0)(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减2过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念再对概念的内涵进行分

2、析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的3情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力教学重点1二次根式(a0)的内涵(a0)是

3、一个非负数;()2a(a0);=a(a0)及其运用2二次根式乘除法的规定及其运用3最简二次根式的概念4二次根式的加减运算教学难点1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用2二次根式的乘法、除法的条件限制3利用最简二次根式的概念把一个二次根式化成最简二次根式教学关键1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点2培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神单元课时划分本单元教学时间约需11课时,具体分配如下:211 二次根式 3课时212 二次根式的乘法 3课时213 二次根式的加减 3课时教学活动、习题

4、课、小结 2课时课 题:161 二次根式二次根式的概念及其运用 1教学目标:知识与技能: 理解二次根式的概念,并利用(a0)的意义解答具体题目过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重点:形如(a0)的式子叫做二次根式的概念教学难点:利用“(a0)”解决具体问题教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法教学过程 一、课堂导入: 问题1:(1)当x是怎样的实数时,在实数范围内有意义?二、合作探究: 很明显

5、、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 议一议: 1-1有算术平方根吗?0的算术平方根是多少?当a0)、-、(x0,y0) 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2当x是多少时,在实数范围内有意义?解:由3x-10,得:x 当x时,在实数范围内有意义三、交流展示:例3当x是多少时,+在实数范围内有意义? 解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义例4(1)已知y=+5,求的值(答案:2)四、归纳小结 1形如(a0

6、)的式子叫做二次根式,“”称为二次根号2要使二次根式在实数范围内有意义,必须满足被开方数是非负数五、当堂训练: 一、选择题 1下列式子中,是二次根式的是( )2下列式子中,不是二次根式的是( ) A- B C Dx2 A B C D 3已知一个正方形的面积是5,那么它的边长是( )A5 BC D以上皆不对 二、填空题 1形如_的式子叫做二次根式 2面积为a的正方形的边长为_ 3负数_平方根 三、综合提高题 1若+有意义,则=_ 2使式子有意义的未知数x有( )个 A0 B1 C2 D无数六、布置作业:习题16.1第1题板书设计: 二次根式二次根式的概念及其运用 问题1 议一议: 例1 例2 例

7、3 学生板演 例4 归纳小结教学反思:课 题: 16.1 二次根式(2) 2教学目标:知识与技能:理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简过程与方法:过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重点:(a0)是一个非负数;()2=a(a0)及其运用教学难点:导出(a0)是一个非负数;用探究()2=a(a0)教法:1、引导发现法: 2、讲练结合法: 学法:1、类

8、比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 :问题1什么叫二次根式?2当a0时,叫什么?当a0 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 例3、在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 四、归纳小结 1(a0)是一个非负数2()2=a(a0);反之:a=()2(a0) 五、当堂训练: 一、选择题 1下列各式中、,二次根式的个数是( ) A4 B3 C2 D1 2数a没有算术平方根,则a的取值范围是( )A a0 B a0 C a0 D a

9、=0 二、填空题 1(-)2=_2已知有意义,那么是一个_数 三、综合提高题 1计算 、 3已知+=0,求xy的值 2把下列非负数写成一个数的平方的形式: 4在实数范围内分解下列因式:(1)5 (2)3.4 (3)(4)x(x0) (1)x2-2 (2)x4-9 3x2-5六、布置作业:习题16.1第2题的9(1)、(2)、(3)、(4)小题、第4题板书设计: 二次根式2 问题1 议一议: 例1 例2例3 学生板演 归纳小结教学反思:课 题: 16.1 二次根式(3) 3教学目标:知识与技能:理解=a(a0)并利用它进行计算和化简过程与方法:通过具体数据的解答,探究=a(a0),并利用结论解决

10、具体问题情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重难点:a(a0)教学重难点 :探究结论关键:讲清a0时,a才成立教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 : 问题1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数;3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、合作探究: 议一议 填空: =_=_=_;=_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01

11、;=;=;=0;= 因此,一般地:=a(a0) 例1、化简 (1) (2) (3) (4)解:(1)=3 (2)=4 (3)=5 (4)=3 三、交流展示:例2、 填空:当a0时,=_;当aa,则a可以是什么数? 解:(1)因为=a,所以a0; (2)因为=-a,所以a0;(3)因为当a0时=a,要使a,即使aa所以a不存在;当aa,即使-aa,a0综上,a2,化简- 四、归纳小结 =a(a0)及其运用,同时理解当a- C= 二、填空题 1-=_2若是一个正整数,则正整数m的最小值是_ 三、综合提高题 1若1995-a+=a,求a-19952的值 2 .若-3x2时,试化简x-2+。3若 ,则

12、a的取值范围是 4若ABC的三边长为a,b,c,其中a和b满足 ,则c的取值范围是六、布置作业:习题16.1第2题的(5)、(6)、(7)、(8)小题板书设计: 二次根式3 问题1 议一议: 例1 例2 例3 学生板演 归纳小结教学反思:课 题: 162 二次根式的乘除(1) 4教学目标:知识与技能:理解(a0,b0),=(a0,b0),并利用它们进行计算和化简过程与方法:由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并用它解题和化简情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重

13、点:(a0,b0),=(a0,b0)及运用教学难点:发现规律,导出(a0,b0)教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 :问题1填空 (1)=_,=_;(2)=_,=_ (3)=_,=_老师点评(纠正学生练习中的错误) 二、合作探究: 议一议 :(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数 一般地,对二次根式的乘法规定为: (a0,b0) 反过来: =(a0,b0) 例1计算:(1) (2)(3)(4) 解:(1)= (2)

14、=(3)=9 (4)= 例2 化简(1) (2) (3) (4) 解:(1)=34=12(2)=49=36(3)=910=90 (4)= 三、交流展示:(1)计算: 32 (2) 化简: ; ; ; ; 例3判断下列各式是否正确,不正确的请予以改正: (1)(2)=4=4=4=8四、归纳小结=(a0,b0)=(a0,b0)运用五、当堂训练:一、选择题 1若直角三角形两条直角边的边长分别为cm和cm,那么此直角三角形 斜边长是( )A3cm B3cm C9cm D27cm 2化简a的结果是( ) A B C- D- 3等式成立的条件是( ) Ax1 Bx-1 C-1x1 Dx1或x-1二、填空题

15、:1=_2自由落体的公式为S=gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_三、综合提高题:1计算 比校大小 : (1)与 (2)与 2、计算:(1) (2) (3)六、布置作业:习题16.2第1题板书设计: 二次根式的乘除(1) 问题1 议一议: 例1 例2 例3 学生板演 归纳小结教学反思:课 题:162 二次根式的乘除(2) 5教学目标:知识与技能:理解=(a0,b0)和=(a0,b0)及利用它运算过程与方法:利用具体数据,发现规律,归纳出除法规定,逆向思维写出逆向等式情感与价值:通过学习培养学生利用规定计算和化简的科学精神,观察、分析问题能

16、力教学重点:理解=(a0,b0),=(a0,b0)及计算和化简教学难点:发现规律,归纳出二次根式的除法规定教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 :问题 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_;(2)=_,=_;(3)=_,=_;规律:_;_;_; 二、合作探究: 议一议 :根据以上计算,你能发现什么规律: 一般地,对二次根式的除法规定:=(a0,b0), 、反过来呢? 例1计算:(1) (2) (3) (4) 解:1、=2 2、=2(3)=2、(4)=2 例2化简:(1) (2) (3)

17、 (4) 解:1、=2、= 3、= 三、交流展示: 例3已知,且x为偶数,求(1+x)的值 解:由题意得,即 60)和=(a0,b0)及其运用 五、当堂训练:一、选择题 1计算的结果( ) ABCD 2阅读下列运算过程:, 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是( ) A2 B6 C D 二、填空题 1分母有理化:(1) =_;(2) =_;(3) =_. 2已知x=3,y=4,z=5,那么的最后结果是_六、布置作业:习题16.2第2、3题板书设计: 二次根式的乘除(1) 问题1 议一议: 例1 例3 学生板演 归纳小结教学反思:课 题: 16.2 二次根式的

18、乘除(3) 6教学目标:知识与技能: 理解最简二次根式,并运用它把不是最简二次根式的化成最简二次根式过程与方法:通过计算或化简提炼出最简二次根式的概念,并根据它的特点检验结果 情感与价值:通过学习培养学生计算和化简的科学精神,观察、分析、发现问题的能力教学重点:1、最简二次根式的运用教学难点:2、会判断这个二次根式是否是最简二次根式教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 :问题 1计算(1),(2),(3) 2现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_写

19、出二次根式的乘法规定及逆向等式 二、合作探究: 议一议 :根据以上计算,你能发现什么规律: 二次根式有如下两个特点: 1被开方数不含分母; 2被开方数中不含能开得尽方的因数或因式 我们把满足上述两个条件的二次根式,叫做最简二次根式 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式 学生分组讨论,老师点评:不是 例1(1) ; (2) ; (3) 例2填空、1、一个等腰三角形的周长为,腰长为,则底边的长度为_. 2、一张面积为7的正方形纸片的边长为_三、交流展示:例3观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-, 同理可得:=-.从计算结果

20、中找出规律,并利用这一规律计算 (+)(+1)的值 解:原式=(-1+-+-+-)(+1) =(-1)(+1) =2002-1=2001 四、归纳小结:本节课应掌握:最简二次根式的概念及其运用 五、当堂训练: 一、选择题 1把(y0)化为最简二次根式( ) A(y0) B(y0) C(y0) D以上都不对 2化简的结果是( )A- B-C-D- 二、填空题:1化简=_(x0) 2a化简二次根式号后的结果是_ 三、综合提高题1、若x、y为实数,且y=,求的值2.解方程(1)= (2)3x= 3、已知,求的值。4、计算(1) (2)六、布置作业:习题16.2第4、8题板书设计: 二次根式的乘除(1

21、) 问题1 议一议: 例1 例2 例3 学生板演 归纳小结教学反思:课 题: 16.3 二次根式的加减(1) 7教学目标:知识与技能: 理解和掌握二次根式加减的方法过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重点:二次根式化简为最简根式 教学难点:会判定是否是最简二次根式教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程 一、课堂导入 :问题 1学生

22、活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:上面题目的结果,实际上是同类项合并就是字母不变,系数相加减二、 合作探究: 议一议 :学生活动:计算下列各式(1)2+3 (2)2-3+5 (3)+2+3 老师点评: (1)如果我们把当成x,不就转化为上面的问题吗? (2)把当成y; 2-3+5=(2-3+5)=4=8 (3)把当成z; +2+=2+2+3=(1+2+3)=6 因此,二次根式的被开方数相同是可以合并的;2与它们可以合并吗?试试看? 3+=3+2=5 3+=3+3=6 所以,二次根式加减时,可以先

23、将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并 例1计算:(1)+ (2)+解:(1)+=2+3=(2+3)=5:(2)+=4+8=(4+8)=12 例2计算:(1)3-9+3; (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+三、交流展示:例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x) 解:4x2+y2-4x-6y+10=0 4x2-4x+1+y2-6y+9=0(2x-1)2+(y-3)2=0x=,y=3 原式=+y2-x2+5x =2x+-x+5=x+6 当x=,y=

24、3时、原式=+6=+3 四、归纳小结:1不是最简二次根式,应化成最简的;2相同的最简二次根式进行合并 五、当堂训练:一、选择题 1以下二次根式:;中,与是同类二次根式的是( )A和 B和 C和 D和 2下列各式:3+3=6;=1;+=2;=2,其中错误的有( ) A3个 B2个 C1个D0个 二、填空题:1在、3、-2中,与是同类二次根式的有 2计算5-3-7+9的最后结果是_ 三、综合提高题:1已知2.236,求(-)-(+)的值(结果精确到0.01)2先化简,再求值(6x+)-(4x+),其中x=,y=273、计算:(1) (2)六、布置作业:习题16.3第1、2题板书设计: 二次根式的加

25、减(1) 问题1 议一议: 例1 例2例3 学生板演 归纳小结教学反思:课 题: 16.3 二次根式的加减(2) 8教学目标:知识与技能:运用二次根式、化简解应用题过程与方法:通过将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题情感与价值:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力教学重点:讲清如何解答应用题, 教学难点:如何解答应用题,教法:1、引导发现法: 2、讲练结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入 :问题 1上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个

26、步骤,哪两个步骤 ?第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固二、合作探究: 议一议 :例1观察下列运算,完成下列各题的解答:(1) 判断下列各式是否正确 ( ) ( ) ( ) ( )(2) 根据上述判定结果你能发现什么规律?请你用含有自然数n的式子将你发现的规律写出来,并注明n的取值范围。 例2计算:(1) (2)(3) (4)(5) (6)三、交流展示: 例3若最简根式与根式是同类二次根式,求a、b的值(同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上

27、,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b解:首先把根式化为最简二次根式: =|b| 由题意得 a=1,b=1 四、归纳小结 本节课应掌握运用最简二次根式的合并原理解决实际问题 五、当堂训练: 一、选择题 1已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( )(结果用最简二次根式) A5 B C2 D以上都不对 2小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米(结果同最简二次根式表示) A13 B C10 D5 二、填空题 1某

28、地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_m(结果用最简二次根式) 2已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是_(结果用最简二次根式) 三、综合提高题 1若最简二次根式与是同类二次根式,求m、n的值2同学们,我们以前学过完全平方公式a22ab+b2=(ab)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,是谁的二次根式呢?观察(-1)2=()2-21+12=2-2+1=3-2反之3-2=2-2+1=(-1)2 3-2=(-1)2 =-1求:(1);(2)

29、;(3)你会算吗? (4)若=,则m、n与a、b的关系是什么?并说明理由六、布置作业:习题16.3第3题板书设计: 二次根式的加减(2) 问题1 议一议: 例1 例2 例3 学生板演 归纳小结教学反思:课 题: 16.3 二次根式的加减(3) 9教学目标:知识与技能: 含有二次根式的式子进行乘除运算及二次根式的多项式乘法公式的应用过程与方法:复习整式运算知识并将运用于含有二次根式的式子的乘除、乘方等运算情感与价值:通过学习培养学生准确计算和化简的科学精神及观察分析发现问题能力教学重点:二次根式的乘除、乘方等运算规律;教学难点:由整式运算知识迁移到含二次根式的运算教法:1、引导发现法: 2、讲练

30、结合法: 学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法教学过程一、课堂导入 :问题 1:学生活动:请同学们完成下列各题: 1计算:(1)(2x+y)zx (2)(2x2y+3xy2)xy 2计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现它主要有(1)单项式单项式;(2)单项式多项式;(3)多项式单项式;(4)完全平方公式;(5)平方差公式的运用二、合作探究:议一议:如果x、y、z改成二次根式呢?以上的运算规律是否仍成立呢? 整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可

31、以代表二次根式,所以,整式中的运算规律也适用于二次根式 例1计算: (1)(+) (2)(4-3)2 解:(1)(+)=+=+=3+2 (2)(4-3)2=42-32=2- 例2计算:(1)(+6)(3-) (2)(+)(-) 解:(1)(+6)(3-)=3-()2+18-6=13-3 (2)(+)(-)=()2-()2 =10-7=3三、交流展示: 例3已知=2-,其中a、b是实数,且a+b0,化简+,并求值 解:原式=+=+=(x+1)+x-2+x+2 =4x+2 =2- b(x-b)=2ab-a(x-a) bx-b2=2ab-ax+a2 (a+b)x=a2+2ab+b2(a+b)x=(a

32、+b)2a+b0x=a+b 原式=4x+2=4(a+b)+2 四、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算 五、当堂训练: 一、选择题:1(-3+2)的值是( ) A-3; B3-; C2- ; D- 2计算(+)(-)的值是( )A2 B3 C4 D1 二、填空题 1(-+)2的计算结果(用最简根式表示)是_2(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_ 3若x=-1,则x2+2x+1=_4已知a=3+2,b=3-2,则a2b-ab2=_ 三、综合提高题 1化简2当x=时,求+的值(结果用最简二次根式表示)六、布置作业:习题16.3第4题 板书设计: 二次

33、根式的加减(2) 问题1 议一议: 例1 例2 例3 学生板演 归纳小结教学反思:课 题: 二次根式复习导学案 班级:_ 姓名:_ 10一导学目标:理解二次根式的概念,会利用概念判别二次根式、求字母的取值范围围;掌握二次根式的性质和运算法则,会运用它们求字母的取值、化简和计算;3了解最简二次根式的概念,会判别最简二次根式(一) 二导学重点:二次根式的化简及计算三、导学方法:探究、引例、当堂训练四、导学过程:(一)、二次根式的判别【思考】二次根式的条件是:1含有 ,2被开方数 。特别是必须确定被开方数。例下列式子中二次根式有 (二)、二次根式有意义的条件:【思考】一个代数式有意义,不仅其中的二次

34、根式的被开方数 ,而且分母 ,幂的底数 。【例】(1)中的取值范围是 ;(2)当 时,有意(3) 若等式成立,则的取值范围是;(4) 若+有意义,则= (三)、二次根式的双非负数性:【思考】 0( 0)【例】(1)已知+=0,求xy的值;(2)已知、为实数,且,求、的值(3)已知x,y为实数,且满足=0,那么 (四)、二次根式的化简1、【思考】最简二次根式的条件是:(1) ,(2) 【例1】化简:(1) 。小结:若被开方数是一个整数,则 (2) 。小结:若被开方数中的分母是一个平方数,则 (3) 。小结:若被开方数是一个带分数,则 (4) 。小结:若被开方数是一个小数,则 (5) 。小结:若根

35、号外的正系数能与被开方数中的分母约分,则 。(6)已知,则的正确结果为_。小结:若化简含字母的二次根式,则必须先确定字母的 ,再化简。2、【思考】+的有理化因式是_; 的有理化因式是_;的有理化因式是_【例2】把下列各式的分母有理化(1) (2)(五)、同类二次根式的应用【思考】把几个二次根式化为 后,被开方数 的二次根式叫同类二次根式。【例1】在、3、-2中,与是同类二次根式的有_ _【例2】若最简二次根式与是同类二次根式,求m、n的值(六)、二次根式的求值【例1】实数a在数轴上的位置如图所示,则 化简后为 【例2】一个正数的两个平方根分别是和,则的值是 【例3】已知为有理数,分别表示的整数部分和小数部分,且,则 。【例4】先化简再计算:,其中x是一元二次方程的正数根. (七) 、二次根式的计算【例1】(1),则( )AaB. aC. aD. a 五、当堂训练1、设a=1,a在两个相邻整数之间,则这两个整数是( )A1和2B2和3 C3和4 D4和5 2、下列各式中正确的是 A B CD 3、计算=_4、若,则的值为 5、已知,则代数式的值为

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服