收藏 分销(赏)

《一元二次方程》中考题训练.doc

上传人:仙人****88 文档编号:5499397 上传时间:2024-11-11 格式:DOC 页数:11 大小:614.01KB 下载积分:10 金币
下载 相关 举报
《一元二次方程》中考题训练.doc_第1页
第1页 / 共11页
《一元二次方程》中考题训练.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
《一元二次方程》中考题训练 1、(2012山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售? 解答:(1)解:设每千克核桃应降价x元. …1分 根据题意,得 (60﹣x﹣40)(100+×20)=2240. …4分 化简,得 x2﹣10x+24=0 解得x1=4,x2=6.…6分 答:每千克核桃应降价4元或6元. …7分 (2)解:由(1)可知每千克核桃可降价4元或6元. 因为要尽可能让利于顾客,所以每千克核桃应降价6元. …8分 此时,售价为:60﹣6=54(元),. …9分 答:该店应按原售价的九折出售. …10分 2、(2012,济宁))一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗? 考点: 一元二次方程的应用。 分析: 根据设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,进而得出即可. 解答: 解:因为60棵树苗售价为120元×60=7200元<8800元, 所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得: x[120﹣0.5(x﹣60)]=8800, 解得:x1=220,x2=80. 当x2=220时,120﹣0.5×(220﹣60)=40<100, ∴x1=220(不合题意,舍去); 当x2=80时,120﹣0.5×(80﹣60)=110>100, ∴x=80, 答:该校共购买了80棵树苗. 3\(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售. (1)求平均每次下调的百分率; (2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择: 方案一:打九折销售; 方案二:不打折,每吨优惠现金200元. 试问小华选择哪种方案更优惠,请说明理由. 解答: 解 (1)设平均每次下调的百分率为x. 由题意,得5(1﹣x)2=3.2. 解这个方程,得x1=0.2,x2=1.8. 因为降价的百分率不可能大于1,所以x2=1.8不符合题意, 符合题目要求的是x1=0.2=20%. 答:平均每次下调的百分率是20%. (2)小华选择方案一购买更优惠. 理由:方案一所需费用为:3.2×0.9×5000=14400(元), 方案二所需费用为:3.2×5000﹣200×5=15000(元). ∵14400<15000, ∴小华选择方案一购买更优惠. 4、(2012,南充)方程x(x-2)+x-2=0的解是( ) (A)2  (B)-2,1  (C)-1 (D)2,-1 5、(2012成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是 ,根据题意,下面列出的方程正确的是( ) A. B. C. D. 考点:由实际问题抽象出一元二次方程。 解答:解:设平均每次提价的百分率为x, 根据题意得:, 故选C. 6、(2012,南充)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2. (1)求m的取值范围. (2)若2(x1+x2)+ x1x2+10=0.求m的值. 解题时,一定要注意其前提是此方程的判别式△≥0 7、(2012成都)有七张正面分别标有数字,,,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则使关于 的一元二次方程 有两个不相等的实数根,且以为自变量的二次函数 的图象不经过点(1,O)的概率是________. 考点:二次函数图象上点的坐标特征;根的判别式;概率公式。 解答:解:∵x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根, ∴△>0, ∴[﹣2(a﹣1)]2﹣4a(a﹣3)>0, ∴a>﹣1, 将(1,O)代入y=x2﹣(a2+1)x﹣a+2得,a2+a﹣2=0, 解得(a﹣1)(a+2)=0, a1=1,a2=﹣2. 可见,符合要求的点为0,2,3. ∴P=. 8、(2012,攀枝花)已知一元二次方程:的两个根分别是、则的值为( ) A. B. C. D. 9、(2012,资阳)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是 k<且k≠0 . 解答: 解:∵kx2﹣x+1=0有两个不相等的实数根, ∴△=1﹣4k>0,且k≠0, 解得,k<且k≠0; 故答案是:k<且k≠0. 10、(2012宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为(  )   A. (x﹣3)2+11 B. (x+3)2﹣7 C. (x+3)2﹣11 D. (x+2)2+4 考点:配方法的应用。 11、(2012宜宾)某市政府为落实“保障性住房政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设. (1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程); (2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值. 解答:解:(1)设到2013年底,这两年中投入资金的平均年增长率为x, 根据题意得: 3+3(x+1)+3(x+1)2=10.5…(3分) (2)由(1)得,x2+3x﹣0.5=0…(4分) 由根与系数的关系得,x1+x2=﹣3,x1x2=﹣0.5…(5分) 又∵mx12﹣4m2x1x2+mx22=12 m[(x1+x2)2﹣2x1x2]﹣4m2x1x2=12 m[9+1]﹣4m2(﹣0.5)=12 ∴m2+5m﹣6=0 解得,m=﹣6或m=1…(8分) 12、如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米? (1)请你将小明对“思考题”的解答补充完整: 解:设点B将向外移动x米,即BB1=x, 则B1C=x+0.7,A1C=AC﹣AA1= 而A1B1=2.5,在Rt△A1B1C中,由得方程 , 解方程得x1= ,x2= , ∴点B将向外移动 米。 (2)解完“思考题”后,小聪提出了如下两个问题: 【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么? 13、把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。 (1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。 ①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少? ②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。 (2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。 解:(1)①设剪掉的正方形的边长为xcm。则, 即,解得(不合题意,舍去),, ∴剪掉的正方形的边长为9cm。 ②侧面积有最大值。 设剪掉的正方形的边长为xcm,盒子的侧面积为ycm2, 则y与x的函数关系为:, 即 , 即, ∴x=10时,y最大=800。 即当剪掉的正方形的边长为10cm时,长方形盒子的侧面积最大为800cm2。 (2)在如图的一种剪裁图中,设剪掉的正方形的边长为xcm。 , 解得:(不合题意,舍去),。 ∴剪掉的正方形的边长为15cm。 此时长方体盒子的长为15cm,宽为10cm,高为5cm。 14、(2012,兰州)某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为xm,则可列方程为【 】 A.x(x-10)=200 B.2x+2(x-10)=200 C.x(x+10)=200 D.2x+2(x+10)=200 (2012,珠海)已知关于的一元二次方程. (1)当m=3时,判断方程的根的情况; (2)当m=-3时,求方程的根 15、(2012,广东)据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次。若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;[来源:学科网ZXXK] (2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次? 解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x, 依题意,得 5000 ( 1 + x )2 =7200, 解得:x1 = 0.2 = 20% , x2 = —2.2(不合题意,舍去), 答:这两年我国公民出境旅游总人数的年平均增长率为20% 。 (2)∵ 7200×(1+20%) = 8640, ∴ 预测2012年我国公民出境旅游总人数约8640万人次。 16、(2012,湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是(  ) A. 5500(1+x)2=4000 B. 5500(1﹣x)2=4000 C. 4000(1﹣x)2=5500 D. 4000(1+x)2=5500 解析设年平均增长率为x, 那么2010年的房价为:4000(1+x), 2011年的房价为:4000(1+x)2=5500. 故选:D. 17、(2012,安顺)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是(  )   A. 1 B. ﹣1 C. 0 D. 无法确定 故选B. 18、(2012,绥化)先化简,再求值: 19、(2012,荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是( ) A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=16 20、(2012,张家界)已知的两根,则 . 21、(2012,无锡)解方程:x2-4x+2=0; 22、(2012娄底)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是(  )   A. 289(1﹣x)2=256 B. 256(1﹣x)2=289 C. 289(1﹣2x)=256 D. 256(1﹣2x)=289 解答:解:设平均每次降价的百分率为x,则第一降价售价为289(1﹣x),则第二次降价为289(1﹣x)2,由题意得: 289(1﹣x)2=256.故选:A. 点评:此题主要考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b. 23、(2012,常德)若一元二次方程有实数解,则m的取值范围是 ( ) A. B. C. D. 知识点考察:①一元二次方程判别式的运用。②一元一次不等式的解法。 分析:一元二次方程有实数解,则△≥0,然后再解不等式。 答案:B 23、(2012,黄石)分解因式:=. 故答案为:(x-1)(x+2). (2012,黄石)解方程: 【解答】解:依题意: 将①代入②中化简得:x2+2x-3=0 解得:x=-3或x=1 所以,原方程的解为: 或 24、(2012•湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2. 解答: 解:设AB=xm,则BC=(50﹣2x)m. 根据题意可得,x(50﹣2x)=300, 解得:x1=10,x2=15, 当x=10,BC=50﹣10﹣10=30>25, 故x1=10(不合题意舍去), 答:可以围成AB的长为15米,BC为20米的矩形. (2012,襄阳)如果关于x的一元二次方程x+1=0有两个不相等的实数根,那么的取值范围是(  ) A. B.且 C. D.且 25、(2012,襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形) 26、(2012,孝感) 27、(2012,南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部。月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元。 ① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元; ② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利 28、(2012,广安)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( C ) A.a>2 B.a<2 C.a<2且a≠1 D.a<-2 29、(2012,南通)设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= 4 . 【解答】解:∵α,β是一元二次方程x2+3x-7=0的两个根,∴α+β=-3,α2+3α=7, ∴a2+4a+β=a2+3α+α+β=7-3=4,故答案为:4. 30、.(2012,江西)已知关于的一元二次方程有两个相等的实数根,则的值是 . 31、(2012,大庆)若方程的两实根为、,求的值. 32、(2012,本溪)已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为(  )[来源:Z。xx。k.Com] A、13 B、11或13 C、11 D、12 33、(2012•烟台)下列一元二次方程两实数根和为﹣4的是(  )   A.x2+2x﹣4=0  B.x2﹣4x+4=0  C.x2+4x+10=0  D.x2+4x﹣5=0 34、(2012,德州)若关于x的方程有实数解,那么实数a的取值范围是_____________. 35、(2012,德州)解方程: 经检验:是原方程的根.所以原方程的根是 36、(2012•聊城)一元二次方程x2﹣2x=0的解是 _________ . 37、(2012•德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是 a≥﹣1 . 38、(2012,东营)方程有两个实数根,则k的取值范围是( ). A. k≥1 B. k≤1 C. k>1 D. k<1 39、(2012上海)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是 . 解答:解:∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根, ∴△=(﹣6)2﹣4c<0,即36﹣4c<0, c>9.故答案为c>9. 40、(2012上海)解方程:.故原方程的根为x=1. 41、(2012,攀枝花)先化简,再求值:,其中满足方程: 11
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服