资源描述
初二(下)中考压轴题练习一
综合练习一
1、(苏州)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.
(1)设从出发起运动了x s,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示,不要写出x的取值范围);
(2)设从出发起运动了x s,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半.
①试用含x的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.
y
P
B(14,3)
O
x
C(4,3)
A(14,0)
1
Q
2、(吉林)已知:在Rt△ABC中,∠C=90°, BC=a cm,AC=b cm,b>a,且a、b是方程x 2-(m-1)x+(m+4)=0的两根,AB=5 ,
(1)求a和b;
(2)若△A’B’C’与△ABC完全重合,当△A’B’C’固定不动,将△ABC沿CA所在的直线向左以1 个单位长度/s的速度移动.设移动x s后△A’B’C’与△ABC的重叠部分的面积为y ,求y与x之间的函数关系式;几秒钟后两个三角形重叠部分的面积等于?
A
C
B
A’
C’
B’
3、(白银)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1) 点A的坐标是__________,点C的坐标是__________;
(2) 当t= 秒或 秒时,MN=AC;
(3) 设△OMN的面积为S,求S与t的函数关系式;
(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.
3
展开阅读全文