1、 第九章 不等式与不等式组 单元教学设计编写者:肖大留 单位:武宣县思灵初级中学审稿者:吴月婷 覃家泼 单位:武宣县思灵初级中学一.本章学习目标1. 了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是描写现实世界中不等关系的一种有效的数学模型。2. 学会观察、对比和归纳,探索不等式的性质,能利用它们探索一元一次不等式(组)的解。3. 了解解一元一次不等式(组)的基本目标,熟悉解一元一次不等式(组)的一般步骤,掌握一元一次不等式(组)的解法,并能在数轴上表示其解集,体会解法中所蕴涵的化归思想。二.本章内容安排
2、及教法 本单元的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式(组)分析与解决实际问题。其中,以不等式(组)为工具分析问题、解决实际问题是重点,也是教学中的难点;一元一次方程(组)及其相关概念、不等式的性质是基础知识;掌握一元一次不等式(组)的解法及解集的几何表示是基本技能和能力。本单元重视数学与实际的关系,注意体现列不等式(组)中蕴涵的建模思想和解不等式(组)中蕴涵的化归思想。学生通过经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法
3、,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识,是本单元的中心任务。由于不等式所解决的是含有不等关系的问题,这与前 面较多讨论的等量关系既有联系又有区别,所以学习本单元时会遇到如何通过比较新旧知识取得新进展的问题。 教材要求学生通过本单元知识的学习,理解并掌握不等式的概念和性质以及一元一次不等式(组)的解法和应用,提高数学思维能力;通过合作交流和小组讨论探讨数学知识在现实情景中的简单应用,培养学生对数学的兴趣,提高合作交流能力和数学表达能力;通过具体情景发现生活中的数学问题并加以解决,感受数学在日常中的简单应用,进一步了解数学的应用价值,激发学生对数学学习兴趣。 考虑到学生的年龄
4、结构、认知特点和已有相关知识的基础,建议教师在教学过程中首先注重类比,做好从方程到不等式的转移。方程(组)是讨论等量关系的数学工具,不等式(组)是讨论不等关系的数学工具,两者既有联系又有差异。在前面已经学习过有关方程(组)内容的基础上,学生已经对方程有了一定的认识,会用方程表示问题情境中的等量关系,会解一元一次方程何和二元一次方程组,即对方程的认识已经具备了一定的积累。通过比较的方式接受新知识一元一次不等式(组)可以充分发挥学习心理学中正向迁移的积极作用借助已有的对方程的认识,不仅可以为进一步学习不等式(组)提供一条合理的学习之路,而且还可以起到很好的温故而知新的效果。另一方面,结合实际生活中
5、的具体问题,让学生通过有代表性的实际问题作为知识的发生、发展的背景资料,在建立和运用不等式(组)这种数学模型的过程之中,直观的体验和了解不等式(组)的相关概念.同时,教师应采取丰富的教学手段和讲课方式,运用比较的方法(如比较一元一次方程和一元一次不等式),结合显示的实际情况,最大限度的开发学生的潜能,激发学生的学习欲望,调动学生的学习积极性,让学生在轻松愉快的课堂气氛和充满乐趣的课堂活动中掌握数学知识,培养数学技能,提高数学学习能力。三.课时安排 建议本单元的教学安排为13课时,还可根据学生的具体情况另安排12课时的复习课。四.本章的教学建议 1、 以实际问题为例,结合问题中的不等关系,引出不等式及其解集的概念。 2、 类比一元一次方程,引出一元一次不等式的概念。 3、 对不等式的性质进行讨论,得出不等式的三个性质,并运用它们解简单的不等式。 4、 这一节的框架结构和内容与一元一次方程的相应部分类似,教学中可以类比方程、等式的性质等来讨论不等式、不等式的性质等。五抓住教学重点和关键、突破教学难点。 1、正确理解不等式、不等式的解与解集的意义,把不等式的解集正确的表示在数轴上。 2、通过形象的比喻和生活中的实例以及游戏激发学生的学习兴趣,引导学生通过合作讨论和小组交流等多种形式进行学习。3