收藏 分销(赏)

淬火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响.pdf

上传人:自信****多点 文档编号:547387 上传时间:2023-11-27 格式:PDF 页数:6 大小:4.27MB
下载 相关 举报
淬火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响.pdf_第1页
第1页 / 共6页
淬火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响.pdf_第2页
第2页 / 共6页
淬火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响.pdf_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、20MATERIALSFOR MECHANICAL ENGINEERINGVol.47No.6Jun.20232023年6 月第47 卷第6 期2023机械工程材料D0I:10.11973/jxgccl202306004淬火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响王波,张崎静?,徐颖梅1.3(扬州工业职业技术学院1.智能制造学院,2.基础科学部,扬州2 2 512 7;3.南京航空航天大学材料科学与技术学院,南京2 10 0 16)摘要:对热轧态中锰钢进行淬火-配分处理,研究了火冷却温度(19 5,2 2 0,2 55,2 8 0)对其显微组织、物相组成、硬度和拉伸性能的影响。结

2、果表明:淬火-配分处理后中锰钢中存在板条马氏体、块状马氏体和残余奥氏体;随着淬火冷却温度升高,板条马氏体含量减少,块状马氏体含量增加,残余奥氏体体积分数先增大后减小,当淬火冷却温度为2 2 0 时最大,为19.8 1%;随着淬火冷却温度的升高,中锰钢的硬度增大,抗拉强度、屈服强度和断后伸长率先增大后减小,当淬火冷却温度为2 2 0 时中锰钢的断后伸长率和强塑积最大,分别为15.6%和2 3.7 6 GPa%。关键词:中锰钢;淬火-配分;淬火冷却温度;显微组织;力学性能中图分类号:TG142.1文献标志码:A文章编号:10 0 0-3 7 3 8(2 0 2 3)0 6-0 0 2 0-0 5E

3、ffect of Quenching Cooling Temperature on Structure and Properties of MediumManganese Steel for Construction Machinery after Quenching and PartitioningWANG Bo,ZHANG Qijing,XU Yingmeil.3(1.School of Intelligent Manufacturing,2.Department of Basic Science,Yangzhou Polytechnic Institute,Yangzhou225127,

4、China;3.School of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract:Quenching and partitioning treatment was carried out on the hot-rolled medium manganese steel,and the effects of quenching cooling temperature(195,220,255,280 C)on its

5、microstructure,phase composition,hardness,and tensile properties were studied.The results show that lath martensite,massive martensite andresidual austenite were found in the medium manganese steel after quenching and partitioning treatment.Withincreasing quenching cooling temperature,the content of

6、 lath martensite decreased,the content of massivemartensite increased,and the volume fraction of residual austenite first increased and then decreased,reaching themaximum of 19.81%at quenching cooling temperature of 220 C.With increasing quenching cooling temperature,the hardness of the medium manga

7、nese steel increased,and the tensile strength,yield strength,and elongation afterfracture first increased and then decreased.When the quenching cooling temperature was 220o C,the elongationafter fracture and the product of strength and elongation of the medium manganese steel were the highest,whichw

8、ere 15.6%and 23.76 GPa%,respectively.Key words:medium manganese steel;quenching and partitioning;quenching cooling temperature;microstructure;mechanical property0引言收稿日期:2 0 2 2-0 4-13;修订日期:2 0 2 3-0 5-0 9基金项目:江苏省扬州市校合作专项课题(YZ2020177)作者简介:王波(19 7 9 一),男,山东烟台人,副教授,硕士工程机械用钢服役环境较为复杂苛刻,使用过程中经常受到大应力载荷、外部硬

9、质颗粒嵌人等作用,不仅需要具有较高的强度和硬度,还需具有良21MATERIALS FOR MECHANICAL ENGINEERING王波,都温度对工程机用中锰钢浮火配分组织与性能的影响2023机械工程材料好的韧塑性和耐磨性能。目前,工程机械中应用较多的是中锰(锰质量分数3%10%)相变诱导塑性钢,这种钢与传统超高强度(抗拉强度大于10 0 0 MPa)马氏体耐磨钢相比强度较低,韧塑性较高 2 。现代工程机械正朝着大型化、复杂化和大功率方向发展,对工程机械用钢提出了更高的强度和韧塑性要求,而目前普遍使用的热轧态中锰钢的基体组织为马氏体,强度和硬度高但韧性差,使用过程中容易发生开裂 3 ,需要通

10、过改变加工工艺等方法来调控其显微组织 4,在不明显降低强度和耐磨性能的同时提高其韧性。淬火-配分处理是一种将钢奥氏体化后先淬火至马氏体转变开始温度M、和马氏体转变终了温度M,之间的某一温度,再在此温度或高于M温度(配分温度)短时保温的热处理工艺,可以在马氏体基体中引人一定量的残余奥氏体,从而提高钢的塑性和韧性。目前,已有科研工作者尝试从奥氏体化温度、配分温度、冷却速率和冷却介质等方面探讨工艺参数对淬火-配分处理后中锰钢显微组织、力学性能和耐磨性能的影响 5-7,而关于淬火冷却温度影响的报道相对较少。因此,作者以工程机械用中锰热轧钢板为研究对象,在不同淬火冷却温度下对其进行淬火-配分处理,研究了

11、淬火冷却温度对显微组织和力学性能的影响,研究结果可为高强、高韧塑性工程机械用中锰钢的开发与应用提供参考,减少材料在实际应用过程中开裂和磨损失效。1试样制备与试验方法试验原料为工程机械用中锰热轧钢板,板厚为15mm,由南京钢铁集团有限公司提供,采用电感耦合等离子体发射光谱法测得其主要化学成分如表1所示。表1中锰钢的化学成分Table 1Chemical composition of medium manganese steel元素CSiMnPSCrMoFe质量分数/%0.18 1.423.680.0080.0040.120.23余使用Formastor-FII型全自动相变仪测得中锰钢的奥氏体转变

12、开始温度Acl、奥氏体转变终了温度Ac3、马氏体转变开始温度M。和马氏体转变终了温度M分别为6 57,7 9 4,3 10,17 6。根据上述测得的相变温度制定淬火-配分工艺:使用NaberthermL1/12-LT40/12型热处理炉将中锰钢加热至8 50 进行奥氏体化处理,保温2 0 min后分别水淬至19 5,2 2 0,2 55,2 8 0,再升温至3 6 0 进行配分处理,配分时间为15min,空冷至室温,在经淬火-配分处理的中锰钢板上取尺寸为15mm15mm15mm的金相试样,经6 0#1200砂纸逐级打磨,1.5m金刚石研磨膏抛光和体积分数3.5%硝酸酒精溶液腐蚀后,依次用清水和

13、酒精清洗并吹干,使用S-4800型场发射扫描电镜(SEM)及配备的电子背散射衍射附件(EBSD)观察显微组织。使用Empyrean型X射线衍射仪(XRD)进行物相分析,并用附带软件计算残余奥氏体体积分数 8 。在经淬火-配分处理的中锰钢板上采用线切割法取厚度为1mm的薄片,经砂纸打磨至厚度为6 0 m,再冲裁出直径为3 mm的小圆片,使用MTP-1A型电解双喷减薄仪进行减薄,电解液为体积分数10%高氯酸乙醇溶液,使用FEOL-2100型透射电子显微镜(TEM)观察显微组织。使用HV-1000型数显维氏硬度计进行维氏硬度测试,载荷为4.9 N,保载时间为15s,测3 个点取平均值。使用HR-15

14、0A型洛氏硬度计进行洛氏硬度测试,载荷为9 8 0 N,保载时间为15s,测5个点取平均值。根据GB/T228.12010,使用MTS-810型万能材料试验机进行室温拉伸试验,试样尺寸如图1,拉伸速度为1 mmmin-1。8040180图1拉伸试样形状与尺寸Fig.1Shape and size of tensile specimen2试验结果与讨论2.1对显微组织和物相组成的影响由图2 可见:热轧态中锰钢的显微组织为板条马氏体和残余奥氏体;不同温度淬火-配分处理后中锰钢的显微组织基本均为板条马氏体、块状马氏体和残余奥氏体,且经淬火-配分处理后中锰钢中的板条马氏体较热轧态中锰钢更加短小和均匀。

15、随着火冷却温度的升高,中锰钢中的板条马氏体含量减少,块状马氏体含量增加。由图3 可见,当淬火冷却温度为19 5,2 2 0 时,中锰钢中均存在淬火形成的一次马氏体()、配分后冷却至室温形成的二次马氏体()9 和残余奥氏体(),较高淬火冷却温度下的二次马氏体含量较多。与一次马氏体相比,二次马氏体的位错密度较大,晶格畸变较为严重 10 ,因此菊池带质量相对较差而呈现白色。22MATERIALS FOR MECHANICALENGINEERING王波,等淬火冷却温度对工程机械用中锰钢火-配分后组织与性能的影响2023机械工程材料残奥氏体5um5um5um(a)热轧态(b)195(c)220 5um5

16、um(d)225(e)280 图2 热轧态与不同温度冷却淬火-配分处理中锰钢的SEM形貌Fig.2 SEM morphology of hot-rolled(a)and different-temperature cooling quenching-partitioning treated(b-e)medium manganese steel5um5um5um5um(a)195,SEM 形貌(b)195,EBSD 形貌(c)220,SEM 形貌(d)220,EBSD 形貌图3不同温度冷却淬火-配分处理中锰钢的SEM和EBSD形貌Fig.3SEM(a,c)and EBSD(b,d)morphol

17、ogy of different-temperature cooling quenching-partitioning treated medium manganese steel由图4可见:2 2 0 冷却淬火-配分处理后中锰钢的显微组织中同时存在薄膜状残余奥氏体、块状残余奥氏体和马氏体,薄膜状残余奥氏体主要位于马氏体之间,宽度约为150 nm;马氏体和残余奥氏体内均存在高密度位错由图5可见,热轧态和不同温度淬火-配分处理中锰钢的物相组成相同,均主要由和相组成,且不同温度冷却火-配分处理后中锰钢中均存在(2 0 0)晶面的衍射峰。经计算,热轧态中锰钢的残余奥氏体体积分数较大,约为10.3 4

18、%,这是因为中锰钢含有较多的锰元素,热轧后冷却较慢而引起碳配分和奥氏体热稳定化 11,因此残余奥氏体体积分数较大;当淬火冷却温度为19 5,2 2 0,2 55,2 8 0 时,淬火-配分处理后中锰钢的残余奥氏体体积分数分别为13.2 1%,19.81%,17.6 2%,15.2 3%,均高于热轧态中锰钢。随着淬火冷却温度升高,残余奥氏体体积分数先增大后减小,在淬火冷却温度为2 2 0 时达到最大值。根据图5中不同晶面的残余奥氏体晶格常数计算残余奥氏体内平均碳质量分数12 ,得到热轧态中锰钢中残余奥氏体内的平均碳质量分数约为0.7 9%,当淬火冷却温度为19 5,2 2 0,2 55,2 8

19、0 时,淬火-配分处理后中锰钢的残余奥氏体内平均碳质量分数分别为1.0 9%,1.0 1%,0.9 3%,0.8 7%,均高于热轧态中锰钢。随着淬火冷却温度的升高,中锰钢中残余奥氏体内平均碳含量逐渐减小,在淬火冷却温度为2 8 0 时达到最小值。淬火冷却温度的升高会增加残余奥氏体含量,同时会相应地降低奥氏体内平均碳含量,23MATERIALSFOR MECHANICAL ENGINEERING王波工程机械用中锰钢萍火-配分后组织与性能的影响2023机械工程材料快状残余奥氏体膜状残余奥氏体马氏体博膜状残杀奥氏体331000420Lum0.2um111y0.2m(a)薄膜状和块状残余奥氏体(b)薄

20、膜状残余奥氏体明场像(c)薄膜状残余奥氏体暗场像图42 2 0 冷却淬火-配分处理中锰钢的TEM形貌Fig.4 TEM morphology of medium manganese steel after 220 C cooling quenching-partitioning treatment:(a)film-like and blocky residualaustenite;(b)bright field image of film-like residual austenite and(c)dark field image of film-like residual austenite

21、(110)Y(200)Y280CTTD(211)(220)0(310),(200)255(220%311Y280255220220195-195热轧态热轧态40506070 8090100110 1201304849505152535420/()20/C)图5热轧态与不同温度冷却淬火-配分处理中锰钢的XRD谱Fig.5XRD patterns of hot-rolled and different-temperature cooling quenching-partitioning treated medium manganese steel使得奥氏体在配分冷却过程中转变成二次马氏体 13;在

22、上述两个因素的综合作用下,残余奥氏体含量随淬火冷却温度升高先增加后减小。2.2对力学性能的影响热轧态中锰钢的维氏硬度和洛氏硬度分别为505HV,47.3H R C。由图6 可见,不同温度冷却火-配分处理中锰钢的维氏硬度和洛氏硬度较热轧态中锰钢均有不同程度减小。这是因为热轧态中锰钢因其组织中的马氏体位错密度大、碳过饱和度高 14-15,而具有较高硬度;淬火-配分处理后,马氏体内碳含量降低,残余奥氏体含量增加,因此硬度较热轧态中锰钢有所减小。随淬火冷却温度的升高,中锰钢的维氏硬度和洛氏硬度均逐渐增大,当淬火冷却温度为2 8 0 时分别达到47 1HV,44.9 H R C。随着淬火冷却温度的升高,

23、残余奥氏体内平均碳含量逐渐减小,配分冷却过程中形成的二次马氏体含量增加,而二次马氏体硬度高 16 ,因此硬度增大。热轧态中锰钢的抗拉强度、屈服强度和断后伸长率分别为16 2 2 MPa,10 35M Pa,12.3%,表现出较高的强度和较低的塑性,这与其组织中的马氏体内位错密度大、碳过饱和度高有关。由图7 可见,不同温度冷却火-配分处理后,中锰钢的抗拉强度、屈服强度520一维氏硬度洛氏硬度505004848046046440444204240040190210230250270290火温度/图6 大不同温度冷却淬火-配分处理中锰钢的维氏硬度和洛氏硬度Fig.6Vickers and Rockw

24、ell hardness of different-temperaturecooling quenching-partitioning treated medium manganese steel和断后伸长率均低于热轧态中锰钢,且随淬火冷却温度的升高先增大后减小。当淬火冷却温度为2 55时,抗拉强度和屈服强度达到最大值,分别为1582MPa和9 57 MPa。当淬火冷却温度为2 2 0 时,断后伸长率和强塑积(抗拉强度与断后伸长率的乘积)达到最大值,分别为15.6%和2 3.7 6 GPa%,这主要与此时中锰钢的残余奥氏体含量较多有关 17-18 。随着淬火冷却温度升高,淬火-配分处理后中锰钢

25、中残余奥氏体含量先增大后减小,残余奥氏体内平均碳含量减小,残余奥氏体转变形成的二次马氏体含量增加,产生相变诱导塑性(TRIP)效24(下转第6 0 页)MATERIALS FOR MECHANICAL ENGINEERING波,等萍火冷却温度对工程机械用中锰钢淬火-配分后组织与性能的影响2023机械工程材料1800抗拉强度122一屈服强度20断后伸长率160018%/率斗旦1614001412001210100086800190210230250270290火温度/图7不同温度冷却淬火-配分处理中锰钢的室温拉伸性能Fig.7Room temperature tensile properties

26、 of different-temperaturecooling quenching-partitioning treated medium manganese steel应 19 17而使得中锰钢的强度得以改善。3结 论(1)热轧态中锰钢的显微组织为板条马氏体和残余奥氏体,不同温度冷却淬火-配分处理后中锰钢中均存在板条马氏体、块状马氏体和残余奥氏体。随着淬火冷却温度升高,板条马氏体含量减少,块状马氏体含量增加。(2)不同温度冷却淬火-配分处理后中锰钢中残余奥氏体体积分数均高于热轧态中锰钢(10.34%)。随着淬火冷却温度升高,中锰钢中残余奥氏体体积分数先增加后减小,当淬火冷却温度为2 2 0

27、 时最大,为19.8 1%。(3)随着火冷却温度升高,中锰钢的维氏硬度和洛氏硬度逐渐增加,抗拉强度、屈服强度和断后伸长率先增大后减小,当淬火冷却温度为2 2 0 时中锰钢的断后伸长率和强塑积最大,分别为15.6%和23.76GPa%,具有较好的强塑性。参考文献:1位亮.高强度工程机械用钢应用现状和发展前景.冶金与材料,2 0 2 1,41(1):147-148.WEI L.Application status and development prospect of highstrength steel for construction machineryJJ.Metallurgy andMat

28、erials,2021,41(1):147-148.2BIALOBRZESKA B,JASINSKI R,KONAT L,et al.Analysisof the properties of Hardox Extreme steel and possibilities ofits applications in machineryLJJ.Metals,2021,11(1):162.3MISHRA S,DALAI R.Effect of quenching and partitioningtreatment on low carbon medium manganese alloyed steel

29、s:A shortreviewJJ.Materials Today:Proceedings,2021,43:593-596.4LIN G Q,LAN H F,DU L X.Modelling and experimentalvalidation of austenite growth from as-quenched martensiteduring intercritical annealing of a medium-Mn steelJ.Journalof Materials Science,2021,56(34):19165-19179.5徐娟萍,付豪,王正,等.中锰钢的研究进展与前景.

30、工程科学学报,2 0 19,41(5):557-57 2.XU J P,FU H,WANG Z,et al.Research progress andprospect of medium manganese stelJJ.Chinese Journal ofEngineering,2019,41(5):557-572.6WANG M,HUANG M X.Abnormal TRIP effect on the workhardening behavior of a quenching and partitioning steel athigh strain rateJJ.Acta Materia

31、lia,2020,188:551-559.7SCHNEIDER R,KAAR S,SCHNEIDER S,et al.Comparisonof the hardness-toughness relationship of medium-Mn steelsafter Q&T and Q&P treatmentsJJ.HTM Journal of HeatTreatment and Materials,2021,76(6):445-457.8孟传峰,王一德,卫英慧,等.工程机械用TQ960E微合金化低碳高强度钢的开发J.特殊钢,2 0 18,39(6):6 6-7 0.MENG C F,WANG

32、Y D,WEI Y H,et al.The development ofmechanical engineering of TQ960E microalloyed high strengthlow carbon steelJJ.Special Steel,2018,39(6):66-70.9HAJYAKBARY F,SIETSMA J,MIYAMOTO G,et al.Interaction of carbon partitioning,carbide precipitation andbainite formation during the Q&P process in a low C st

33、eelJ.Acta Materialia,2016,104:72-83.10米俊龙,贾涓,李建,等.Mn含量对中锰钢Q&P工艺组织及性能的影响J.材料热处理学报,2 0 19,40(12):10 6-111.MI J L,JIA J,LI J,et al.Effect of Mn content onmicrostructure and properties of medium manganese steeltreated by Q&P process J.Transactions of Materials andHeat Treatment,2019,40(12):106-111.11POL

34、ING W A,DE MOOR E,SPEER J G,et al.Temperatureeffects on tensile deformation behavior of a mediummanganese TRIP steel and a quenched and partitioned steelJJ.Metals,2021,11(2):375-375.12赵晖,时捷,李楠,等.Si对中锰钢淬火配分组织和性能的影响J.材料研究学报,2 0 11,2 5(1):45-50.ZHAO H,SHI J,LI N,et al.Effect of Si on microstructureand

35、properties of quenched medium manganese steel J.Chinese Journal of Materials Research,2011,25(1):45-50.13LI Y J,KANG J,ZHANG W N,et al.A novel phasetransition behavior during dynamic partitioning and analysisof retained austenite in quenched and partitioned steelsJ.Materials Science and Engineering:

36、A,2018,710:181-191.14邓杰,宋新莉,孙新军,等.含钛中锰钢淬火-配分组织及力学性能 J.钢铁,2 0 2 1,56(6):10 3-111.DENG J,SONG X L,SUN X J,et al.Quenching andpartitioning microstructure and mechanical properties ofmedium manganese steel bearing titaniumJJ.Iron&.Steel,2021,56(6):103-111.15LIU C Q,XIONG F,LIU G N,et al.Austenite stabil

37、ity anddeformation behavior in medium Mn steel processed by cyclicquenching ART heat treatmentJJ.Materials,2021,14(23):7132-7132.60(上接第2 4页)MATERIALSFORMECHANICAL ENGINEERING任昊,等:氮掺杂纳米碳包覆MnO复合材料的制备与电化学性能2023机械工程材料JJ.Chemical Engineering Journal,2020,402:125509.11BARAL A,SATISH L,DAS D P,et al.Constr

38、uing theinteractions between MnOz nanoparticle and bovine serumalbumin:Insight into the structure and stability of a protein-nanoparticle complexJJ.New Journal of Chemistry,2017,41(16):8130-8139.12ZHANG S A,ZHAO X S,LI B,et al.Stereoscopic 2Dsuper-microporousphosphazene-basedcovalentorganicframework

39、:Design,synthesis and selective sorption towardsuranium at high acidic condition J.Journal of HazardousMaterials,2016,314:95-104.13XUE R,GUO H,WANG T,et al.Synthesis andcharacterization of a new covalent organic framework linkedby NH linkageJJ.Materials Letters,2017,209:171-174.14WU B K,ZHANG G B,YA

40、N M Y,et al.Graphene scroll-coated-MnO nanowires as high-performance cathodematerials for aqueous Zn-ion batteryLJJ.Small,2018,14(13):1703850.15CHEN P H,ZHOU W Y,XIAO Z J,et al.In situ anchoringMnO nanoparticles on self-supported 3D interconnectedgraphene scroll framework:A fast kinetics boosted ult

41、rahigh-rate anode for Li-ion capacitorJJ.Energy Storage Materials,2020,33:298-308.16LIN J A,ZENG C H,LIN X M,et al.Metal-organicframework-derived hierarchical MnO/Co with oxygenvacancies toward elevated-temperature Li-ion battery J.ACS Nano,2021,15(3):4594-4607.17ZHANG K Y,YAN C W,TANG A.Interfacial

42、 co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries J.Journal of Materials Chemistry A,2021,9(32):17300-17310.18ZHANG Y,LI P W,YIN X Y,et al.Cobalt sulfide supportedon nitrogen and sulfur dual-doped reduced graphene oxide forhighly active

43、 oxygen reduction reactionJJ.RSC Advances,2017,7(79):50246-50253.19LI F,QIN T T,SUN Y P,et al.Preparation of a one-16WANG C Y,CHANG Y,LI X D,et al.Relation ofmartensite-retained austenite and its effect on microstructureand mechanical properties of the quenched and partitionedsteelsJ.Science China T

44、echnological Sciences,2016,59(5):832-838.17KAAR S,SCHNEIDER R,KRIZAN D,et al.Influence of thequenching and partitioning process on the transformationkinetics and hardness in a lean medium manganese TRIP steelJ.Metals,2019,9(3):353-353.dimensional hierarchical MnO CNT Co-N/C ternarynanostructureasahi

45、gh-performancebifunctionalelectrocatalyst for rechargeable Zn-air batteriesJJ.Journal ofMaterials Chemistry A,2021,9(39):22533-22543.20ZHANG Y N,LIU Y P,LIU Z H,et al.MnO2 cathodematerials with the improved stability via nitrogen doping foraqueous zinc-ion batteriesJJ.Journal of Energy Chemistry,202

46、2,64:23-32.21LIU N N,WU X A,YIN Y Y,et al.Constructing the efficiention diffusion pathway by introducing oxygen defects inMn,O,for high-performance aqueous zinc-ion batteriesJJ.ACS Applied Materials&Interfaces,2020,12(25):28199-28205.22HUANG Z X,DUAN Y J,JING Q H,et al.Assembly ofMng O4 nanoparticle

47、s at low temperature on graphene withenhanced electrochemical property for zinc-ion battery J.Journal of Alloys and Compounds,2021,864:158316.23WANG S Y,ZHAO R,YAO S Y,et al.Stretching the c-axisof the Mng O lattice with broadened ion transfer channels forenhanced Na-ion storageJ.Journal of Material

48、s ChemistryA,2021,9(41):23506-23514.24ZHANG H H,YANG D,MA T Y,et al.Flash-inducedultrafast production of graphene/MnO with extraordinarysupercapacitanceJJ.Small Methods,2021,5(7):2100225.25SAHOO D,SHAKYA J,CHOUDHURY S,et al.High-performance MnO,nanowire/MoSz nanosheet composite fora symmetrical soli

49、d-state supercapacitor J.ACS Omega,2022,7(20):16895-16905.26LU W,LI Y A,YANG M,et al.Construction of hierarchicalMn,O MnO2 core-shell nanofibers for enhancedperformance supercapacitor electrodes JJ.ACS AppliedEnergy Materials,2020,3(9):8190-8197.27YAN Y T,LIN J H,JIANG J,et al.A general strategy toc

50、onstruct N-doped carbon-confined MoO,and MnO for high-performance hybrid supercapacitorsJJ.Vacuum,2019,165:179-185.18BLANKART C,WESSELMECKING S,KRUPP U.Influenceofquenchingg and partitioning parameterssonphasetransformations and mechanical properties of mediummanganese steel for press-hardening appl

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服