收藏 分销(赏)

CO_%282%29加氢制高碳α-烯烃Fe基催化剂研究进展.pdf

上传人:自信****多点 文档编号:541476 上传时间:2023-11-27 格式:PDF 页数:11 大小:2.37MB
下载 相关 举报
CO_%282%29加氢制高碳α-烯烃Fe基催化剂研究进展.pdf_第1页
第1页 / 共11页
CO_%282%29加氢制高碳α-烯烃Fe基催化剂研究进展.pdf_第2页
第2页 / 共11页
CO_%282%29加氢制高碳α-烯烃Fe基催化剂研究进展.pdf_第3页
第3页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、二氧化碳化学利用第 48 卷第 3 期低碳化学与化工Vol.48 No.3Jun.2023Low-carbon chemistry and chemical Engineering2023 年 6 月CO2加氢制高碳-烯烃Fe基催化剂研究进展 李自琴1,王康洲2,高新华1,马清祥1,赵天生1,张建利1(1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021;2.宁夏大学 材料与新能源学院,宁夏 银川 750021)摘要:随着“双碳”目标的提出,二氧化碳(CO2)减排和资源化利用受到研究者的广泛关注。CO2耦合绿氢技术制高附加值化学品是CO2资源化利用

2、的有效途径之一。高碳-烯烃是重要的化工原料,围绕非均相催化体系催化CO2加氢制高碳-烯烃的相关研究,总结分析了CO2加氢制高碳-烯烃的催化剂设计理念、反应机理、助剂、载体以及制备工艺对催化剂催化性能的影响和构效关系。其中,设计高效催化剂有效调控CO键活化和CC链增长仍存在挑战。对CO2加氢制高碳-烯烃的发展方向进行了展望,可为CO2加氢制高碳-烯烃新型催化剂的开发提供参考。关键词:CO2加氢;Fe基催化剂;高碳-烯烃;构效关系;反应机理中图分类号:TQ519文献标志码:A文章编号:2097-2547(2023)03-11-11Research progress on Fe-based cata

3、lysts for CO2 hydrogenation to high carbon-olefinsLI Ziqin1,WANG Kangzhou2,GAO Xinhua1,MA Qingxiang1,ZHAO Tiansheng1,ZHANG Jianli1(1.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,College of Chemistry and Chemical Engineering,Ningxia University,Yinchuan 75

4、0021,Ningxia,China;2.School of Materials and New Energy,Ningxia University,Yinchuan 750021,Ningxia,China)Abstract:With the proposal of“carbon peaking and carbon neutrality”goals,carbon dioxide(CO2)emission reduction and resource utilization have attracted extensive attention from researchers.The pro

5、duction of high value-added chemicals by CO2 coupled with green hydrogen technology is one of the effective ways of CO2 resource utilization.The high carbon-olefin is an important chemical raw material.Based on the research on the production of high-carbon-olefin from CO2 hydrogenation by heterogene

6、ous catalytic system,the influence of catalyst design concept,reaction mechanism,promoter,support and preparation process on the catalytic performance and the structure-activity relationship were summarized and analyzed.Among them,there are still challenges in designing efficient catalysts to effect

7、ively regulate CO bond activation and CC chain growth.The development direction of CO2 hydrogenation to high carbon-olefins was prospected,which can provide a reference for the development of novel catalysts for CO2 hydrogenation to high carbon-olefins.Keywords:CO2 hydrogenation;Fe-based catalysts;h

8、igh carbon-olefins;structure-activity relationship;reaction mechanism收稿日期:2023-03-20;修回日期:2023-04-20。基金项目:国家自然科学基金(21965029);宁夏自然科学基金重点项目(2022AAC02002)。第一作者:李自琴(2000),硕士研究生,研究方向为CO2催化转化,E-mail:。通信作者:王康洲(1992),博士,副教授,研究方向为低碳资源催化转化,E-mail:kangzhou_;张建利(1980),博士,研究员,研究方向为碳一化学,E-mail:。化石燃料在人类社会发展中扮演着重要角

9、色,其燃烧利用导致二氧化碳(CO2)大量排放,引起了一系列环境问题,如气候变化、全球变暖和海洋酸化1,对人类生存环境和社会经济产生了重大影响。如何实现CO2减排和资源化利用,已引起各国研究者的广泛关注。CO2虽然是一种温室气体,但也是廉价的碳源,将其催化活化、选择性转化为高附加值化学品,不仅可缓解CO2过度排放造成的环境问题和化学品对石油资源的依赖,还能实现CO2资源化利用2。CO2加氢选择性转化为高附加值化学品DOI:10.12434/j.issn.2097-2547.202300962023 年第 48 卷低碳化学与化工12的研究主要集中在电、光和热催化领域3,其中电和光催化因其非常低的转

10、化效率限制了其规模化应用4,而热催化具有较高的转化效率,已被广泛研究5。利用可再生能源制取的绿氢,不仅可直接作为能源,还能解决传统化工过程中化石资源制氢带来的高碳排放问题。绿氢作为枢纽和桥梁,与CO2耦合制成高附加值化学品,可以将可再生能源的能量存储在高附加值化学品中,并减少CO2排放,因此,CO2耦合绿氢技术热催化加氢制高附加值化学品具有重要的现实意义。高碳-烯烃(末端具有C=C键且碳数大于等于 4 的烯烃)是生产润滑油、聚合物和洗涤剂等的重要原料6,主要来源于石蜡裂解、乙烯齐聚和费托合成(Fischer-Tropsch synthesis,FTs)过程中的共生产物7。随着我国经济的飞速发展

11、,高碳-烯烃的需求量大幅增加,我国 80%以上C6+长链-烯烃都依赖进口,因此亟需开发生产高碳-烯烃的新路线8。传统线性-烯烃的主要生产工艺有石蜡裂解法和乙烯齐聚法。石蜡裂解法的温度相对比较缓和(400600 C),高纯度蜡作为原料经溶剂脱蜡制得精致石蜡,再经过汽化过程、裂解、急冷、降温换热塔分离和脱丁烷塔等过程可获得高碳-烯烃,但该过程反应复杂、存在杂质,且产品收率低。CO2热催化加氢选择转化为高碳-烯烃是近年来很有前途的路线,不仅可缓解因过量CO2排放造成的环境问题,同时发展了生产高碳-烯烃的新型可持续路线。CO2加氢是由逆水煤气(RWGS)反应和FTs反应组成的串联反应9,其中RWGS反

12、应(式(1))是一个吸热反应,FTs反应(式(2)、式(3))是放热反应10。反应过程中CO2首先通过RWGS反应被转化为CO,生成的CO被活化形成CHx(x 1:1),CHEN等64研究发现,碳包覆的MgH2纳米薄片具有储存固体氢的功能,当使用固体氢进行CO2加氢反应时,V(H2):V(CO2)要求较低,H2的利用率可以显著提高。这是因为与不含碳的块状MgH2相比,碳包覆MgH2纳米薄片上大部分MgH2晶域很小且不规则,这表明碳片可以覆盖在Mg表面上,将MgH2薄片限制在纳米级,这种碳包覆结构可以防止Mg薄片团聚,有利于CO2加氢。并且,与传统加氢方法相比,碳包覆MgH2纳米薄片显示出与铁基

13、催化剂相当的C2=C4=选择性。图 11Na-Zn-Fe催化剂作用下CO2加氢制C2=C12=烯烃的反应机理20Fig.11Reaction mechanism of CO2 hydrogenation to C2=C12=olefins under Na-Zn-Fe catalysts20综上所述,通过对Fe基催化剂的结构、助剂、载体或制备方法等的控制调整可实现进一步提高CO2加氢活性和LAOs选择性。表 1 展示了上述部分研究关于Fe基催化剂对CO2加氢制高碳-烯烃的催化性能。研究了Fe-Mn-K-Ce催化剂的焙烧温度对CO2加氢制烯烃的影响,尽管将焙烧温度从 500 C提高到800 C导

14、致BET表面积从 100200 m2/g急剧减少,但与在 400 C下焙烧得到的催化剂相比,在 800 C下焙烧得到的Fe-Mn-K-Ce催化剂的O/P值和CO2转化率分别提高了 5%和 2.9%。第 3 期19李自琴等:CO2加氢制高碳-烯烃Fe基催化剂研究进展3结语与展望Fe基催化剂具有RWGS反应的活性位点和有用于碳碳偶联反应的活性中心而被广泛用于CTHO-FTs反应。助剂、载体等对催化剂的物化性质和催化性能具有重要的影响,可有效促进CTHO-FTs反应。碱金属助剂可调控Fe基催化剂的电子特性,促进碳化铁的形成。其中,Na助剂可稳定Fe5C2相的形成,降低初级烯烃在Fe基催化剂表面的吸附

15、能力,抑制二次加氢,但是,较高的Na含量并不能明显改善催化性能,甚至会产生负面影响。Zn助剂不仅可以促进烯烃在催化剂表面的解吸,避免生成的烯烃发生二次加氢,还可以调整催化剂表面的碳化铁/氧化铁比例,平衡RWGS和FTs反应。Mn助剂可以有效促进Fe物种的分散和Fe3O4向Fe5C2相的转化。载体上的氧空位有利于吸附桥接碳酸盐物种,这些物种很容易分解成碳的中间体,用于碳碳偶联反应。碳材料是非常有前途的Fe基催化剂载体,因为它们具有高稳定性、耐水性、优异的渗碳能力以及与活性位点的适度互动。近年来国内科研工作在CTHO-FTs铁基催化剂的研究上取得了较大进展,但是催化剂活性点的构建和Fe5C2物相的

16、稳定一直是个挑战。CTHO-FTs反应存在烯烃选择性差和催化剂稳定性差的问题,由于不可避免的RWGS反应,CO和低碳烯烃选择性较高。精确协同RWGS和碳碳偶联反应,促进长链-烯烃的选择性,抑制CO、CH4和其他副产品的形成,发展稳定碳化铁和强耐水性的Fe基催化剂有望改善催化剂的稳定性。此外,单原子催化体系可能会显著改善催化活性和稳定性。参考文献1 ZHANG Q H,KANG J C,WANG Y.Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity J.ChemC

17、atChem,2010,2(9):1030-1058.2 游震亚.非负载型铁催化剂上二氧化碳加氢制低碳烯烃的研究D.厦门:厦门大学,2013.3 MIAO Z R,WANG Q L,ZHANG Y F,et al.In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O J.Appl Catal B,2022,301:120802.4 AL-DOSSARY M,FIERRO J

18、L G.Effect of high-temperature pre-reduction in Fischer-Tropsch synthesis on Fe/ZrO2 catalysts J.Appl Catal A,2015,499:109-117.5 KEIM W.Oligomerization of ethylene to-olefins:Discovery and development of the shell higher olefin process(SHOP)J.Angew Chem Int Ed,2013,52(48):12492-12496.6 SU X J,ZHANG

19、J L,FAN S B,et al.Effect of preparation of Fe-Zr-K catalyst on the product distribution of CO2 hydrogenation J.RSC Adv,2015,5(98):80196-80202.7 WAN H J,WU B S,XIANG H W,et al.Fischer-Tropsch synthesis:Influence of support incorporation manner on metal dispersion,metal-support interaction,and activit

20、ies of iron catalysts J.ACS Catal,2012,2(9):1877-1883.8 VAN DER LAAN G P,BEENACKERS A A C M.Kinetics and selectivity of the Fischer-Tropsch synthesis:A literature review J.Catal Rev,1999,41(3/4):255-318.9 LI Z L,WANG J J,QU Y Z,et al.Highly selective 表 1不同Fe基催化剂对CO2加氢制高碳-烯烃的催化性能Table 1Catalytic perf

21、ormance of different Fe-based catalysts for CO2 hydrogenation to high carbon-olefin催化剂反应条件催化性能参考 文献t/Cp/MPa体积空速/(mLg-1h-1)V(H2)/V(CO2)CO2转化率/%CO选择性/%C2=C12=选择性/%LAOs选择性/%Na-Zn-Fe339.852.53.43.038.015.078.03620Fe/ZrO23501.04.673.037.014.053.028Fe/C+K3203.0240003.040.017.058.030Fe/C-K2CO33201.024003.0

22、32.421.474.371.831Fe5C2-ZnO-Na3201.5100003.037.018.063.034Na-Zn-Fe3402.515000 3.039.014.080.04635Fe6Zn1Al13501.5150003.039.122.570.340.244Na-CoFe2O43203.072003.041.89.763.451ZnCo0.5Fe1.5O43202.5240003.049.65.874.052NaSrFe3203.08000 3.040.58.377.565.553FeK/SWNTs3402.090003.052.79.662.357Fe/Co-YK3001.

23、0123.025.921.170.978.959注:质量空速,单位为g/(gh);质量空速,单位为L/(gh);质量空速,单位为gh/mol。2023 年第 48 卷低碳化学与化工20conversion of carbon dioxide to lower olefins J.ACS Catal,2017,7(12):8544-8548.10 GAO P,DANG S S,LI S G,et al.Direct production of lower olefins from CO2 conversion via bifunctional catalysis J.ACS Catal,2018

24、,8(1):571-578.11 CHENG J,HU P,ELLIS P,et al.Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis J.J Phys Chem C,2010,114(2):1085-1093.12 李娜,庞英,杨林,等.介孔FeCo催化剂制备及其在CO2加氢制低碳烯烃的催化性能J.应用化工,2016,45(7):1238-1241+1245.13 NUMPILAI T,CHANLEK N,POO-ARPORN Y,et al.Tuning in

25、teractions of surface-adsorbed species over Fe-Co/K-Al2O3 catalyst by different K contents:Selective CO2 hydrogenation to light olefins J.ChemCatChem,2020,12(12):3306-3320.14 HU B X,FRUEH S,GARCES H F,et al.Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve

26、 manganese oxide supported iron catalysts J.Appl Catal B,2013,132/133:54-61.15 DOKANIA A,CHOWDHURY A D,RAMIREZ A,et al.Acidity modification of ZSM-5 for enhanced production of light olefins from CO2 J.J Catal,2020,381:347-354.16 WEI J,YAO R W,HAN Y,et al.Towards the development of the emerging proce

27、ss of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons J.Chem Soc Rev,2021,50(19):10764-10805.17 OJELADE O A,ZAMAN S F.A review on CO2 hydrogenation to lower olefins:Understanding the structure-property relationships in heterogeneous catalytic systems J.J CO2 Util,2021,4

28、7:101506.18 WANG D,XIE Z H,POROSOFF M D,et al.Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics J.Chem,2021,7(9):2277-2311.19 何孝祥,顾雄毅,范琛,等.Fe3O4表面逆水煤气反应的DFT研究J.华东理工大学学报(自然科学版),2011,37(4):424-429.20 ZHANG Z Q,YIN H R,YU G D,et al.Selective hydrogenation of CO2 and CO in

29、to olefins over sodium-and zinc-promoted iron carbide catalysts J.J Catal,2021,395:350-361.21 GUO L S,SUN J,JI X W,et al.Directly converting carbon dioxide to linear-olefins on bio-promoted catalysts J.Commun Chem,2018,1:11.22 LUQUE R,DE LA OSA A R,CAMPELO J M,et al.Design and development of catalys

30、ts for biomass-to-liquid-Fischer-Tropsch(BTL-FT)processes for biofuels production J.Energy Environ Sci,2012,5(1):5186-5202.23 RIBEIRO M C,JACOBS G,DAVIS B H,et al.Fischer-Tropsch synthesis:An in-situ TPR-EXAFS/XANES investigation of the influence of group I alkali promoters on the local atomic and e

31、lectronic structure of carburized iron/silica catalysts J.J Phys Chem C,2010,114(17):7895-7903.24 YANG Y,XIANG H W,XU Y Y,et al.Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis J.Appl Catal A,2004,266(2):181-194.25 成康,张庆红,康金灿,等.二氧化碳直接制备高值化学品中的接力催化方法J

32、.中国科学:化学,2020,50(7):743-755.26 NGANTSOUE-HOC W,ZHANG Y Q,OBRIEN R J,et al.Fischer-Tropsch synthesis:Activity and selectivity for group I alkali promoted iron-based catalysts J.App Catal A,2002,236(1/2):77-89.27 ZHAI P,XU C,GAO R,et al.Highly tunable selectivity for syngas-derived alkenes over zinc a

33、nd sodium-modulated Fe5C2 catalyst J.Angew Chem Int Ed,2016,55(34):9902-9907.28 BARRIOS A J,PERON D V,CHAKKINGAL A,et al.Efficient promoters and reaction paths in the CO2 hydrogenation to light olefins over zirconia-supported iron catalysts J.ACS Catal,2022,12(5):3211-3225.29 刘强,丁杰,纪国敬,等.Fe-Co-K/ZrO

34、2催化CO2加氢制低碳烯烃J.无机材料学报,2021,36(10):1053-1061.30 RAMIREZ A,GEVERS L,BAVYKINA A.Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins J.ACS Catal,2018,8(10):9174-9182.31 HAN Y,FANG C Y,JI X W,et al.Interfacing with carbonaceous potassium promoters boo

35、sts catalytic CO2 hydrogenation of iron J.ACS Catal,2020,10(20):12098-12108.32 WEI J,SUN J,WEN Z Y,et al.New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins J.Catal Sci Technol,2016,6(13):4786-4793.33 MALHI H S,SUN C,ZHANG Z Z,et al.Catalytic co

36、nsequences of the decoration of sodium and zinc atoms during CO2 hydrogenation to olefins over iron-based catalyst J.Catal Today,2022,387:28-37.34 TU W F,SUN C,ZHANG Z Z,et al.Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear alpha-olefins J

37、.Appl Catal B,2021,298:120567.35 ZHANG Z Q,HUANG G X,TANG X L,et al.Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation J.Fuel,2022,309:122105.36 MEIRI N,DINBURG Y,AMOYAL M,et al.Novel process and catalytic materials for converting CO2 and H2 contai

38、ning mixtures to liquid fuels and chemicals J.Faraday Discuss,2015,183:197-215.37 DONG H H,XIE M J,XU J,et al.Iron oxide and alumina 第 3 期21李自琴等:CO2加氢制高碳-烯烃Fe基催化剂研究进展nanocomposites applied to Fischer-Tropsch synthesis J.Chem Commun,2011,47(13):4019-4021.38 BUKUR D B,LANG X,MUKESH D,et al.Binder/supp

39、ort effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis J.Ind Eng Chem Res,1990,29(8):1588-1599.39 SONG G Y,LI M Z,YAN P K,et al.High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5 J.ACS Catal,2020,10(19):11268-112

40、79.40 CHOI Y H,RA E C,KIM E H,et al.Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels J.ChemSusChem,2017,10(23):4764-4770.41 KIM K Y,LEE H,NOH W Y,et al.Cobalt ferrite nanoparticles to form a catalytic Co-Fe alloy carbide phase for

41、selective CO2 hydrogenation to light olefins J.ACS Catal,2020,10(15):8660-8671.42 JIANG J D,WEN C Y,TIAN Z P,et al.Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins J.Ind Eng Chem Res,2020,59(5):2155-2162.43 CHAIPRADITGUL N,NUMPILAI T,CHENG C K,et al.Tuning intera

42、ction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals(Cu,Mn,V,Zn or Co)on light olefins production from CO2 hydrogenation J.Fuel,2021,283:119248.44 XU M J,LIU X L,CAO C X,et al.Ternary Fe-Zn-Al spinel catalyst for CO2 hydrogenation to liner-olefins:Synergy effects between

43、 Al and Zn J.ACS Sustainable Chem Eng,2021,9(41):13818-13830.45 LANDAU M V,VIDRUK R,HERSKOWITZ M.Sustainable production of green feed from carbon dioxide and hydrogen J.ChemSusChem,2014,7(3):785-794.46 KHAN M K,BUTOLIA P,JO H,et al.Selective conversion of carbon dioxide into liquid hydrocarbons and

44、long-chain-olefins over Fe-amorphous AlOx bifunctional catalyst J.ACS Catal,2020,10(18):10325-10338.47 WAN H J,WU B S,ZHANG C H,et al.Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis J.Catal Commun,2007,8(10):1538-1545.48 WAN H J,WU B S,AN X,et al.Effect of

45、 Al2O3 binder on the precipitated iron-based catalysts for Fischer-Tropsch synthesis J.J Nat Gas Chem,2007,16(2):130-138.49 LI W H,ZHANG A F,JIANG X,et al.The anti-sintering catalysts:Fe-Co-Zr polymetallic fibers for CO2 hydrogenation to C2=C4=-rich hydrocarbons J.J CO2 Util,2018,23:219-225.50 SATTH

46、AWONG R,KOIZUMI N,SONG C S,et al.Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons J.J CO2 Util,2013,3:102-106.51 YUAN F,ZHANG G H,ZHU J,et al.Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity J.Catal Today,2021,371:142-1

47、49.52 XU Q Q,XU X Q,FAN G L,et al.Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCoxFe2-xO4 catalysts for highly efficient CO2 hydrogenation to produce light olefins J.J Catal,2021,400:355-366.53 OREGE J I,WEI J,HAN Y,et al.Highly stable Sr and Na co-decorated Fe catalyst for h

48、igh-valued olefin synthesis from CO2 hydrogenation J.Appl Catal B,2022,316:121640.54 FU Y J,AMOO C C,QI H C,et al.EDTA chemical directly orient CO2 hydrogenation towards olefins J.Chem Eng J,2022,438:135597.55 SCHULZ H,RIEDEL T,SCHAUB G.Fischer-Tropsch principles of co-hydrogenation on iron catalyst

49、s J.Top Catal,2005,32:117-124.56 WANG J J,YOU Z Y,ZHANG Q H,et al.Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts J.Catal Today,2013,215:186-193.57 WANG S W,WU T J,LIN J,et al.Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 h

50、ydrogenation to heavy olefins J.ACS Catal,2020,10(11):6389-6401.58 WU T J,LIN J,CHENG Y,et al.Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins J.ACS Appl Mater Interfaces,2018,10(28):23439-23443.59 GUO L S,CUI Y,LI H J,et al.Selective formation

展开阅读全文
收益排行: 01、路***(¥15400+),
02、曲****(¥15300+),
03、wei****016(¥13200+),
04、大***流(¥12600+),
05、Fis****915(¥4200+),
06、h****i(¥4100+),
07、Q**(¥3400+),
08、自******点(¥2400+),
09、h*****x(¥1400+),
10、c****e(¥1100+),
11、be*****ha(¥800+),
12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服