收藏 分销(赏)

九年级上册压轴题数学考试试卷含答案.doc

上传人:快乐****生活 文档编号:5410201 上传时间:2024-10-31 格式:DOC 页数:67 大小:4.24MB
下载 相关 举报
九年级上册压轴题数学考试试卷含答案.doc_第1页
第1页 / 共67页
九年级上册压轴题数学考试试卷含答案.doc_第2页
第2页 / 共67页
九年级上册压轴题数学考试试卷含答案.doc_第3页
第3页 / 共67页
九年级上册压轴题数学考试试卷含答案.doc_第4页
第4页 / 共67页
九年级上册压轴题数学考试试卷含答案.doc_第5页
第5页 / 共67页
点击查看更多>>
资源描述

1、九年级上册压轴题数学考试试卷含答案一、压轴题1在平面直角坐标系中,将函数yx22mx+m(x2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0)(1)当y01时,求m的值(2)求y0的最大值(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是(4)点A在图象G上,且点A的横坐标为2m2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围2如图1,平面直角坐标系中,等腰的底边在轴上,顶点在的正半轴上,一动点从出发,以每秒

2、1个单位的速度沿向左运动,到达的中点停止另一动点从点出发,以相同的速度沿向左运动,到达点停止已知点、同时出发,以为边作正方形,使正方形和在的同侧设运动的时间为秒()(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由3如图,抛物线交x轴于两点,交y轴于点C直线经过点(1)求抛物线的解析式;(2)抛物线的对称轴l与直

3、线相交于点P,连接,判定的形状,并说明理由;(3)在直线上是否存在点M,使与直线的夹角等于的2倍?若存在,请求出点M的坐标;若不存在,请说明理由4如图,抛物线经过点,顶点为,对称轴与轴相交于点,为线段的中点(1)求抛物线的解析式;(2)为线段上任意一点,为轴上一动点,连接,以点为中心,将逆时针旋转,记点的对应点为,点的对应点为当直线与抛物线只有一个交点时,求点的坐标(3)在(2)的旋转变换下,若(如图)求证:当点在(1)所求的抛物线上时,求线段的长5已知:如图,抛物线交正半轴交于点,交轴于点,点在抛物线上,直线:过点,点是直线上的一个动点,的外心是(1)求,的值(2)当点移动到点时,求的面积(

4、3)是否存在点,使得点落在的边上,若存在,求出点的坐标,若不存在,请说明理由过点作直线轴交直线于点,当点从点移动到点时,圆心移动的路线长为_(直接写出答案)6在平面直角坐标系中,是坐标原点,抛物线的顶点在第四象限,且经过,两点直线与轴交于点,与抛物线的对称轴交于点,点的纵坐标为1(1)求抛物线所对应的函数表达式;(2)若将直线绕着点旋转,直线与抛物线有一个交点在第三象限,另一个交点记为,抛物线与抛物线关于点成中心对称,抛物线的顶点记为若点的横坐标为-1,抛物线与抛物线所对应的两个函数的值都随着的增大而增大,求相应的的取值范围;若直线与抛物线的另一个交点记为,连接,试间:在旋转的过程中,的度数会

5、不会发生变化?请说明理由7如图,A是以BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF与CB的延长线相交于点P(1)求证:BFEF;(2)求证:PA是圆O的切线;(3)若FGEF3,求圆O的半径和BD的长度8如图1,在平面直角坐标系中,抛物线与轴交于,两点,点坐标为,与轴交于点,直线与抛物线交于,两点(1)求抛物线的函数表达式;(2)求的值和点坐标;(3)点是直线上方抛物线上的动点,过点作轴的垂线,垂足为,交直线于点,过点作轴的平行线,交于点,当是线段的三等分点时,求点坐标;(4)如图2,是轴上

6、一点,其坐标为,动点从出发,沿轴正方向以每秒5个单位的速度运动,设的运动时间为(),连接,过作于点,以所在直线为对称轴,线段经轴对称变换后的图形为,点在运动过程中,线段的位置也随之变化,请直接写出运动过程中线段与抛物线有公共点时的取值范围9如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱

7、形,若存在,请直接写出点E的坐标;若不存在,请说明理由10如图1,在平面直角坐标系中,抛物线与x轴交于点 A(-1,0) ,B(点A在点B的左侧),交y轴与点(0,-3),抛物线的对称轴为直线x1,点D为抛物线的顶点 (1)求该抛物线的解析式; (2)已知经过点A的直线ykx+b(k0)与抛物线在第一象限交于点E,连接AD,DE,BE,当时,求点E的坐标(3)如图2,在(2)中直线AE与y轴交于点F,将点F向下平移个单位长度得到Q,连接QB将OQB绕点O逆时针旋转一定的角度(0360)得到,直线与x轴交于点G问在旋转过程中是否存在某个位置使得是等腰三角形?若存在,请直接写出所有满足条件的点的坐

8、标;若不存在,请说明理由11如图,在矩形ABCD中,AB6,BC8,点E,F分别在边BC,AB上,AFBE2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动(1)求EF的长(2)设CNx,EMy,求y关于x的函数表达式,并写出自变量x的取值范围(3)连结MN,当MN与DEF的一边平行时,求CN的长12如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想:图1中,线段

9、PM与PN的数量关系是 ,位置关系是 ;(2)探究证明:把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸:把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值13在锐角ABC中,AB=AC,AD为BC边上的高,E为AC中点(1)如图1,过点C作CFAB于F点,连接EF若BAD=20,求AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CNAM于N点,射线EN,AB交于P点依题意将图2补全;小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有APE=2MAD小宇把这个猜想与同学们进行

10、讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证APE=2MAD,只需证PED=2MAD想法2:设MAD=,DAC=,只需用,表示出PEC,通过角度计算得APE=2想法3:在NE上取点Q,使NAQ=2MAD,要证APE=2MAD,只需证NAQAPQ请你参考上面的想法,帮助小宇证明APE =2MAD(一种方法即可)14如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式; (2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,CDE的面积为S1, BC

11、E的面积为S2, 求的最大值;过点D作DFAC,垂足为点F,连接CD,是否存在点D,使得CDF中的某个角恰好等于BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由15如图,抛物线经过点A(1,0),B(4,0)与轴交于点C(1)求抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由(3)如图,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使CQM为等腰三角形且BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由16如图,在平面直角坐标系中,函数的图象经过点A(1

12、,4)和点B,过点A作ACx轴,垂足为点C,过点B作BDy轴,垂足为点D,连结AB、BC、DC、DA,点B的横坐标为a(a1)(1)求k的值(2)若ABD的面积为4;求点B的坐标,在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标17如图1,抛物线M1:yx2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQx轴交抛物线M2于点Q,连接CP,CQ设点P的横坐标为m,当m为何值时,使CPQ的面积最

13、大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论18我们规定:有一组邻边相等,且这组邻边的夹角为的凸四边形叫做“准筝形” (1)如图1,在四边形中,求证:四边形是“准筝形”;(2)如图2,在“准筝形”中,求的长;(3)如图3,在中,设是所在平面内一点,当四边形是“准筝形”时,请直接写出四边形的面积19在RtABC中,ACB90,AC1,记ABC,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ(1)当ABD为等

14、边三角形时,依题意补全图1;PQ的长为 ;(2)如图2,当45,且BD时,求证:PDPQ;(3)设BCt,当PDPQ时,直接写出BD的长(用含t的代数式表示)20如图1,抛物线与轴交于、两点,与轴交于点,作直线点是线段上的一个动点(不与,重合),过点作轴于点设点的横坐标为(1)求抛物线的表达式及点的坐标;(2)线段的长用含的式子表示为 ;(3)以为边作矩形,使点在轴负半轴上、点在第三象限的抛物线上如图2,当矩形成为正方形时,求的值;如图3,当点恰好是线段的中点时,连接,试探究坐标平面内是否存在一点,使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由【参考答案】*试卷处理标

15、记,请不要删除一、压轴题1(1)或1;(2);(3)0x11;(4)m0或m或m1【解析】【分析】(1)分m0,m0,m0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:m0,m0,m1,0m1,分别求解即可解决问题【详解】解:(1)如图1中,当m0时,yx22mx+m(xm)2m2+m,图象G是抛物线在直线y2m的左侧部分(包括点D),此时最底点P(m,m2+m),由题意m2+m1,解得m或(舍弃),当m0时,显然不符合题意,当m0时,

16、如图2中,图象G是抛物线在直线y2m的左侧部分(包括点D),此时最底点P是纵坐标为m,m1,综上所述,满足条件的m的值为或1;(2)由(1)可知,当m0时,y0m2+m(m)2+,10,m时,y0的最大值为,当m0时,y00,当m0时,y00,综上所述,y0的最大值为;(3)由(1)可知,当图象G与x轴有两个交点时,m0,当抛物线顶点在x轴上时,4m24m0,m1或0(舍弃),观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0x11,故答案为0x11;(4)当m0时,观察图象可知,不存在点A满足条件,当m0时,图象G在矩形ABCD内的部分所对应的函数值

17、y随x的增大而减小,满足条件,如图3中,当m1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线xm和y轴之间时(可以在直线xm上)时,满足条件则有(2m2)22m(2m2)+m0,解得m,或m2m20,解得m1(不合题意舍弃),当0m1时,如图5中,当点A在直线xm和y轴之间时(可以在直线xm上)时,满足条件即或m2m20,解得m1,综上所述,满足条件m的值为m0或m或m1【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题2(

18、1)t=1;(2)存在,理由见解析;(3)可能,或或理由见解析【解析】【分析】(1)用待定系数法求出直线AC的解析式,根据题意用t表示出点H的坐标,代入求解即可;(2)根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t4,用待定系数法求出直线AB的解析式,求出点H落在BC边上时的t值,求出此时重叠面积为,进一步求出重叠面积关于t的表达式,代入解t的方程即可解得t值;(3)由已知求得点D(2,1),AC=,OD=OC=OA=,结合图形分情况讨论即可得出符合条件的时长【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC

19、的函数解析式为y=kx+b,将点A、C坐标代入,得:,解得:,直线AC的函数解析式为,当点落在边上时,点E(3-t,0),点H(3-t,1),将点H代入,得:,解得:t=1;(2)存在,使得根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t4,设直线AB的函数解析式为y=mx+n,将点A、B坐标代入,得:,解得:,直线AC的函数解析式为,当t4时,点E(3-t,0)点H(3-t,t-3),G(0,t-3),当点H落在AB边上时,将点H代入,得:,解得:;此时重叠的面积为,t5,如图1,设GH交AB于S,EH交AB于T,将y=t-3代入得:

20、,解得:x=2t-10,点S(2t-10,t-3),将x=3-t代入得:,点T,AG=5-t,SG=10-2t,BE=7-t,ET=,,所以重叠面积S=4-=,由=得:,5(舍去),; (3)可能,t1或t=4点D为AC的中点,且OA=2,OC=4,点D(2,1),AC=,OD=OC=OA=,易知M点在水平方向以每秒是4个单位的速度运动;当0t时,M在线段OD上,H未到达D点,所以M与正方形不相遇;当t1时, +(1+4)=秒, 时M与正方形相遇,经过1(1+4)=秒后,M点不在正方行内部,则;当t=1时,由(1)知,点F运动到原E点处,M点到达C处;当1t2时,当t=1+1(4-1)=秒时,

21、点M追上G点,经过1(4-1)=秒,点都在正方形内(含边界),当t=2时,点M运动返回到点O处停止运动,当 t=3时,点E运动返回到点O处, 当 t=4时,点F运动返回到点O处,当时,点都在正方形内(含边界),综上,当或或时,点可能在正方形内(含边界)【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算3(1);(2)的为直角三角形,理由见解析;(3)存在使与直线的夹角等于的2倍的点,且坐标为M1

22、(),M2(,)【解析】【分析】(1)先根据直线经过点,即可确定B、C的坐标,然后用带定系数法解答即可;(2)先求出A、B的坐标结合抛物线的对称性,说明三角形APB为等腰三角形;再结合OB=OC得到ABP=45,进一步说明APB=90,则APC=90即可判定的形状;(3)作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于M1,AC于E;然后说明ANB为等腰直角三角形,进而确定N的坐标;再求出AC的解析式,进而确定M1E的解析式;然后联立直线BC和M1E的解析式即可求得M1的坐标;在直线BC上作点M1关于N点的对称点M2,利用中点坐标公式即可确定点M2的坐标【详解】解:(1)直线经过点当x

23、=0时,可得y=5,即C的坐标为(0,5)当y=0时,可得x=5,即B的坐标为(5,0)解得该抛物线的解析式为(2)的为直角三角形,理由如下:解方程=0,则x1=1,x2=5A(1,0),B(5,0)抛物线的对称轴l为x=3APB为等腰三角形C的坐标为(5,0), B的坐标为(5,0)OB=CO=5,即ABP=45ABP=45,APB=180-45-45=90APC=180-90=90的为直角三角形;(3)如图:作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于M1,AC于E,M1A=M1C,ACM1=CAM1AM1B=2ACBANB为等腰直角三角形.AH=BH=NH=2N(3,2)设A

24、C的函数解析式为y=kx+bC(0,5),A(1,0) 解得b=5,k=-5AC的函数解析式为y=-5x+5设EM1的函数解析式为y=x+n点E的坐标为()= +n,解得:n=EM1的函数解析式为y=x+ 解得 M1的坐标为();在直线BC上作点M1关于N点的对称点M2设M2(a,-a+5)则有:3=,解得a= -a+5=M2的坐标为(,)综上,存在使与直线的夹角等于的2倍的点,且坐标为M1(),M2(,)【点睛】本题属于二次函数与几何的综合题,主要考查了待定系数法确定函数解析式、等腰直角三角形的判定与性质、一次函数图像、三角形外角等知识,考查知识点较多,综合应用所学知识成为解答本题的关键4(

25、1);(2)(,0);(3)见解析;=或=【解析】【分析】(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明ABC是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45,因此设直线EF的解析式为y=x+b,设点M的坐标为(m,0),推出点F(m,6-m),直线与抛物线只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标注意有两种情况,均需讨论(3)过点P作PGx轴于点G,过点E作EHx轴于点H,设点M的坐标为(m,0),由及旋转的性质,证明EHMMGP,得到点E的坐标为

26、(m-1,5-m),再根据两点距离公式证明,注意分两种情况,均需讨论;把E(m-1,5-m)代入抛物线解析式,解出m的值,进而求出CM的长【详解】(1)点在抛物线上,得到,又对称轴,解得,二次函数的解析式为;(2)当点M在点C的左侧时,如下图:抛物线的解析式为,对称轴为,点A(2,0),顶点B(2,4),AB=AC=4,ABC是等腰直角三角形,1=45;将逆时针旋转得到MEF,FM=CM,2=1=45,设点M的坐标为(m,0),点F(m,6-m),又2=45,直线EF与x轴的夹角为45,设直线EF的解析式为y=x+b,把点F(m,6-m)代入得:6-m=m+b,解得:b=6-2m,直线EF的解

27、析式为y=x+6-2m,直线与抛物线只有一个交点,整理得:,=b2-4ac=0,解得m=,点M的坐标为(,0)当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45,因此直线与抛物线不可能只有一个交点综上,点M的坐标为(,0)(3)当点M在点C的左侧时,如下图,过点P作PGx轴于点G,过点E作EHx轴于点H, ,由(2)知BCA=45,PG=GC=1,点G(5,0),设点M的坐标为(m,0),将逆时针旋转得到MEF,EM=PM, HEM+EMH=GMP+EMH =90,HEM=GMP,在EHM和MGP中,EHMMGP(AAS),EH=MG=5-m,HM=PG=1,点H(m-1,0

28、),点E的坐标为(m-1,5-m);EA=,又为线段的中点,B(2,4),C(6,0),点D(4,2),ED=,EA= ED当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m-1,5-m),因此EA= ED当点在(1)所求的抛物线上时,把E(m-1,5-m)代入,整理得:m2-10m+13=0,解得:m=或m=,=或=【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键5(1);(2);(3)点E的坐标为:或或; 圆心P移动的路线长=【解析】【分析】(1)令求出点A(6,0),把点C(-4,n)代入在抛物线方程,解得:n=5,把点B(0,-3)

29、代入,从而可得答案; (2)记与轴的交点为,利用即可求解; (3)分当点P落在CA上时,点P落在AE上时,点P落在CE上时三种情况讨论即可; 分E在D和B点两种情况,求出圆心点的坐标,则圆心P移动的路线长=,即可求解【详解】解:(1)令 点A(6,0), 把点C(-4,n)代入在抛物线方程,解得: ,把点B(0,-3)代入,解得:, 则:直线l:, (2)由(1)知:A(6,0)、B(0,-3)、C(-4,5)、AC中点为 设为: 解得: 所在的直线方程为:, 如图,AC与y轴交点H坐标为:(0,3), (3)如下图: 当点P落在CA上时, 圆心P为AC的中点其所在的直线与AC垂直, 的垂直平

30、分线即圆心P所在的直线方程为: 把代入得: , 解得: E的坐标为; 当点P落在AE上时, 设点则点P的坐标, 则PA=PC, 解得: 故点 当点P落在CE上时, 则PC=PA, 同理可得:故点 综上,点E的坐标为:或或; 当E在D点时,作AD的垂直平分线交的垂直平分线于点, 则,的纵坐标为 代入式,解得: 同理当当E在B点时, 作AB的垂直平分线交的垂直平分线于点, 的中点为:,设为:, 解得: AB直线方程为:,设的垂直平分线方程为: , 的垂直平分线方程为: 解得: 则圆心P移动的路线长= 故答案为:【点评】本题是二次函数的综合题,考查了二次函数与轴的交点坐标,利用待定系数法求解一次函数

31、的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目6(1);(2);不会发生变化,理由见解析【解析】【分析】(1)根据点A,B坐标求出对称轴为,得到,代入抛物线解析式得到,写出顶点,根据其位置,得出,根据A,B坐标表示出AC,BC长度,结合ACBC=8,求得的值,代入点A,B得其坐标,将A坐标代入抛物线解析式得的值,即可得到抛物线的解析式;(2)将代入,求得,结合点E求得PQ解析式,联立,解得点P的坐标,根据中心对称的性质,得到点的横坐标为10,可得的取值范围;过分别作直线的垂线,垂足分别为,设出点P,Q坐标,求出PQ的解析式,联立,得到,由,得到,

32、结合,得到,可证得结果【详解】解:(1)抛物线过两点,由抛物线对称性知:抛物线对称轴为直线,又顶点在第四象限,解得:,抛物线的开口向上,其图象如图所示, ,解得:,由题意可知,点在线段上,而点的纵坐标为1,把代入得,解得:抛物线所对应的函数表达式为(2)把代入得,直线的解析式为由可得,解得:点的横坐标为由中心对称的性质可得,点的横坐标为10,即抛物线的对称轴为直线,结合图象:可得,的范围为;在旋转的过程中,的度数不会发生变化,理由如下:连接,由中心对称的性质可得,过分别作直线的垂线,垂足分别为,如图所示,设,直线的解析式为,则直线过,可得,直线的解析式为由得,整理得,又,即在旋转的过程中,的度

33、数不会发生变化【点睛】本题考查了二次函数与几何图形的综合应用,熟知其设计的知识点及相关关系,是解题的关键7(1)详见解析;(2)详见解析;(3)BD2,r3【解析】【分析】(1)根据已知条件得到EBCADC90,根据平行线分线段成比例定理得出,等量代换即可得到结论;(2)证明PAO90,连接AO,AB,根根据直角三角形斜边中线的性质,切线的性质和等量代换,就可得出结论;(3)连接AB,根据圆周角定理得到BACBAE90,推出FAFBFEFG3,过点F作FHAG交AG于点H,推出四边形FBDH是矩形,得到FBDH3,根据勾股定理得到FH,设半径为r,根据勾股定理列方程即可得到结论【详解】解:(1

34、)EB是切线,ADBC,EBCADC90,ADEB,(同位角相等,两直线平行),(平行线分线段成比例)G是AD的中点,AGGD,EFFB;(2)证明:连接AO,AB,BC是O的直径,BAC90,(直径所对圆周角为直角)在RtBAE中,由(1)知,F是斜边BE的中点,直角三角形斜边中线为斜边一半,AFFBEF,且等边对等角,FBAFAB,又OAOB,ABOBAO,BE是O的切线,EBO90,EBOFBA+ABOFAB+BAOFAO90,PA是O的切线;(3)如图2,连接AB,AO,BC是直径,BACBAE90,EFFB,FAFBFEFG3,过点F作FHAG交AG于点H,FAFG,FHAG,AHH

35、G,FBDBDHFHD90,四边形FBDH是矩形,FBDH3,AGGD,AHHG1,GD2,FH,BD,设半径为r,在RtADO中,解得:r,综上所示:BD,r【点睛】本题主要考察了平行线的性质及定理、平行线分线段成比例定理、等边对等角、直角三角形斜边中线的性质、圆周角定理、勾股定理及圆的切线及其性质,该题较为综合,解题的关键是在于掌握以上这些定理,并熟练地将其结合应用8(1);(2)m=2,D(1,);(3)P(, )或P(1,);(4)0t【解析】【分析】(1)根据A,C两点坐标,代入抛物线解析式,利用待定系数法即可求解(2)通过(1)中的二次函数解析式求出B点坐标,代入一次函数,即可求出

36、m的值,联立二次函数与一次函数可求出D点坐标(3)设出P点坐标,通过P点坐标表示出N,F坐标,再分类讨论PN=2NF,NF=2PN,即可求出P点(4)由A,D两点坐标求出AD的函数关系式,因为以所在直线为对称轴,线段经轴对称变换后的图形为,所以AD,即可求出的函数关系式,设直线与抛物线交于第一象限P点,所以当与P重合时,t有最大值,利用中点坐标公式求出PQ中点H点坐标,进而求出MH的函数关系式,令y=0求出函数与x轴交点坐标,从而可求出t的值,求出t的取值范围【详解】解:(1)A,把A,C代入抛物线,得: 解得 (2)令y=0即,解得 , B(4,0)把B(4,0)代入得 m=2, 得 或 B

37、(4,0),D(1,),m=2,D(1,)(3)设P(a,),则F(a,),DNPH,N点纵坐标等于D点的纵坐标N(a,)FN=()=,PN=,是线段的三等分点,当FN=2PN时,=2(),解得:a=或a=1(舍去),P(, )当2FN=PN时,2()=(),得a=1或a=1(舍去),P(1,),综上P点坐标为P(, )或P(1,),(4)由(2)问得D(1,),又A,设AD:y=kx+b, , ,AD:y=x+5,又GMAD,可设GM: y=x+p,以所在直线为对称轴,线段经轴对称变换后的图形为,AD,可设:y=x+q,又Q,代入,得:+q=0,q=2,:y=x+2,设直线与抛物线交于第一象

38、限N点,所以当与N点重合时,t有最大值, ,解得: 或 ,N(1,)又Q,设H为N,Q中点,则H(,),又H在直线GM上,把H代入GM y=x+p ,得:,P= ,y=x+,令y=0得:0=x+,x= ,即QM=+= ,M的速度为5,t=5= ,0t【点睛】本题考查的是二次函数与一次函数的综合,属于压轴题,涉及到的知识点有,一次函数图像与性质,二次函数图像与性质,二次函数解析式的求法,二次函数与一次函数结合的坐标求法,翻折问题等,解题关键在于正确理解题意,仔细分析题目,通过相关条件得出等量关系求出结论9(1);(2)面积最大值为;(3)存在,【解析】【分析】(1)将点A、B的坐标代入抛物线表达

39、式,即可求解;(2)设,求得解析式,过点P作x轴得垂线与直线AB交于点F,设点,则,即可求解;(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可【详解】解:(1)抛物线过,(2)设,将点代入过点P作x轴得垂线与直线AB交于点F设点,则由铅垂定理可得面积最大值为(3)(3)抛物线的表达式为:yx24x1(x2)25,则平移后的抛物线表达式为:yx25,联立上述两式并解得:,故点C(1,4);设点D(2,m)、点E(s,t),而点B、C的坐标分别为(0,1)、(1,4);当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D

40、),即21s且m3t或21s且m3t,当点D在E的下方时,则BEBC,即s2(t1)21232,当点D在E的上方时,则BDBC,即22(m1)21232,联立并解得:s1,t2或4(舍去4),故点E(1,2);联立并解得:s-3,t-4,故点E(-3,-4)或(-3,-4);当BC为菱形的的对角线时,则由中点公式得:1s2且41mt,此时,BDBE,即22(m1)2s2(t1)2,联立并解得:s1,t3,故点E(1,3),综上,点E的坐标为:(1,2)或或或(1,3)存在,【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求

41、解,避免遗漏10(1);(2)点E的坐标为(,);(3)存在;点的坐标为:(,)或(,)或(,)或(,)【解析】【分析】(1)利用待定系数法代入计算,结合对称轴,即可求出解析式;(2)取AD中点M,连接BM,过点A作AEBM,交抛物线于点E;然后求出直线AE的解析式,结合抛物线的解析式,即可求出点E的坐标;(3)由题意,先求出点F的坐标,然后得到点Q的坐标,得到OQ和OB的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点的坐标即可【详解】解:(1)根据题意,设二次函数的解析式为,对称轴为,则,把点(-1,0),点(0,-3)代入,有,又,抛物线的解析式为:;(2)

42、由(1)可知,顶点D的坐标为(1,),点B为(3,0),点A为(,0),AD的中点M的坐标为(0,2);如图,连接AD,DE,BE,取AD中点M,连接BM,过点A作AEBM,交抛物线于点E;此时点D到直线AE的距离等于点B到直线AE距离的2倍,即,设直线BM为,把点B、点M代入,有,直线BM为,直线AE的斜率为,点A为(,0),直线AE为,解得:(舍去)或;点E的坐标为(,);(3)由(2)可知,直线AE为,点F的坐标为(0,),将点F向下平移个单位长度得到Q,点Q的坐标为(0,),点B为(3,0),则OB=3,在RtOBQ中,由旋转的性质,得,当时,是等边三角形,如图:点G的坐标为(,0),点的横坐标为,点的坐标为(,);当,是等腰三角形,如图:,点的坐标为(,);当时,是等边三角形,如图:此时点G的坐标为(,0)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服