资源描述
人教新人教版七年级数学下册期中测试卷及答
一、选择题
1.9的算术平方根是()
A.81 B.3 C. D.4
2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
3.在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,假命题是( )
A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
B.在同一平面内,过一点有且只有一条直线与已知直线垂直
C.两条直线被第三条直线所截,同旁内角互补
D.两点的所有连线中,线段最短
5.如图,从①,②,③三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
A.0 B.1 C.2 D.3
6.下列说法正确的是( )
A.64的平方根是8 B.-16的立方根是-4
C.只有非负数才有立方根 D.-3的立方根是
7.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
8.如图,点,点向上平移1个单位,再向右平移2个单位,得到点;点向上平移2个单位,再向右平移4个单位,得到点;点向上平移4个单位,再向右平移8个单位,得到点,…,按这个规律平移得到点,则点的横坐标为( )
A. B. C. D.
二、填空题
9.=________.
10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.
12.如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.
13.如图①是长方形纸带,,将纸带沿折叠成图②,再沿折叠成图③,则图③中的的度数是________.
14.阅读下列解题过程:
计算:
解:设①
则②
由②-①得,
运用所学到的方法计算:______________.
15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________.
16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______.
三、解答题
17.(1)计算:
(2)解方程:
18.求下列各式中的x:
(1); (2); (3).
19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:
已知:如图,∠1=∠2,∠A=∠D.
求证:∠B=∠C.
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,( )
∴∠2=____________(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD( )
∵∠A=∠D(已知)
∴∠D=_____________(等量代换)
∴____________∥CD( )
∴∠B=∠C( )
20.如图,已知在平面直角坐标系中的位置如图所示.
(1)写出三个顶点的坐标;
(2)求出的面积;
(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的.
21.对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.
(1)仿照以上方法计算:[]= ;[]= .
(2)若[]=1,写出满足题意的x的整数值 .
(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.
22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
23.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.
(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为 ;
(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.
【参考答案】
一、选择题
1.B
解析:B
【分析】
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.
【详解】
解:=3,
故选:B.
【点睛】
本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别.
2.B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
解析:B
【分析】
根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.
【详解】
A,C,D选项中的图案不能通过平移得到,
B选项中的图案通过平移后可以得到.
故选B.
【点睛】
本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.
3.B
【分析】
根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答.
【详解】
解:设点P纵坐标为y,
点向下平移4个单位后的坐标是,
,
∴
点的坐标为,
点在第二象限.
故选:B.
【点睛】
本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键.
4.C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,
选项A是真命题,故不符合题意;
B.在同一平面内,过一点有且只有一条直线与已知直线垂直,
选项B是真命题,故不符合题意;
C.两条直线被第三条直线所截,同旁内角不一定互补,
选项C是假命题,故符合题意;
D. 两点的所有连线中,线段最短,
选项D是真命题,故不符合题意.
故选:C.
【点睛】
本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.D
【分析】
分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.
【详解】
解:如图所示:
(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;
当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,
即①②可证得③;
(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,
当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,
即①③可证得②;
(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,
当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,
即②③可证得①.
故正确的有3个.
故选:D.
【点睛】
本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.
6.D
【分析】
根据平方根和立方根的定义逐项判断即可得.
【详解】
A、64的平方根是,则此项说法错误,不符题意;
B、因为 ,所以的立方根不是,此项说法错误,不符题意;
C、任何实数都有立方根,则此项说法错误,不符题意;
D、因为,所以的立方根是,此项说法正确,符合题意;
故选:D.
【点睛】
本题考查了平方根和立方根,熟练掌握定义是解题关键.
7.B
【分析】
如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③ ;由平行线的性质即可得到,,再由,即可判断④.
【详解】
解:①如图所示,过点E作EF//AB,
∵AB//CD,
∴AB//CD//EF,
∴∠A+∠AEF=180°,∠C+∠CEF=180°,
∴∠A+∠AEF+∠C+∠CEF=360°,
又∵∠AEF+∠CEF=∠AEC,
∴∠A+∠C+∠AEC=360°,故①错误;
②如图所示,过点P作PE//AB,
∵AB//CD,
∴AB//CD//PE,
∴∠A=∠APE=180°,∠C=∠CPE,
又∵∠APC=∠APE=∠CPE,
∴∠APC=∠A-∠C,故②正确;
③如图所示,过点E作EF//AB,
∵AB//CD,
∴AB//CD//EF,
∴∠A+∠AEF=180°,∠1=∠CEF,
又∵∠AEF+∠CEF=∠AEC,
∴180°-∠A+∠1=∠AEC,故③错误;
④∵,
∴,,
∵,
∴,
∴,故④正确;
故选B
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质
8.A
【分析】
根据平移方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标.
【详解】
点的横坐标为,
点的横坐为标,
点的横坐标为,
点的横坐标为,
…
按这个规律平移得到点的横坐标为,
∴点
解析:A
【分析】
根据平移方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标.
【详解】
点的横坐标为,
点的横坐为标,
点的横坐标为,
点的横坐标为,
…
按这个规律平移得到点的横坐标为,
∴点的横坐标为,
故选A.
【点睛】
本题考查了点的平移,坐标规律,找到规律是解题的关键.
二、填空题
9.6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
解析:6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
10.(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点
解析:(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点睛】
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
11.∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、C
解析:∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、CE为△ABC的两条角平分线,
∴∠ABD=∠ABC,∠ACE=∠ACB,
∵∠1=∠ACE+∠A,∠2=∠ABD+∠A
∴∠1+∠2=∠ACE+∠A+∠ABD+∠A
=∠ABC+∠ACB+∠A+∠A
=(∠ABC+∠ACB+∠A)+∠A
=90°+∠A
故答案为∠1+∠2-∠A=90°.
【点睛】
考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.
12.40°
【分析】
根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
【详解】
∵AD∥BC,∠B=40°,
∴∠EAD=∠B=40°,
∵AD是∠EAC的平
解析:40°
【分析】
根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
【详解】
∵AD∥BC,∠B=40°,
∴∠EAD=∠B=40°,
∵AD是∠EAC的平分线,
∴∠DAC=∠EAD=40°,
故答案为:40°
【点睛】
本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
13.180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵A
解析:180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵AD∥BC,
∴∠BFE=∠DEF=α,∠CFE=180°-∠DEF=180°-α,
∴图②中∠CFG=∠CFE-∠BFE=180°-α-α=180°-2α,
∴图③中∠CFE=∠CFG-∠BFE=180°-2α-α=180°-3α.
故答案为:180°-3α.
【点睛】
本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键.
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:.
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.
15.【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直
解析:
【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直线BC的解析式为,
把,代入得:
,
解得:,
故BC的解析式为,
当时,,
故与轴的交点坐标为;
故答案是.
【点睛】
本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.
16.【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边
解析:
【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6
∴A7A9=8,A5A7=6,A3A5=4
∴A3A7= A5A7- A3A5=2
∴A3A7= A7A9- A3A7=6
又∵A3与原点重合
∴A9的坐标为(6,0)
故答案为:(6,0).
【点睛】
本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.
三、解答题
17.(1);(2)
【分析】
(1)根据实数的运算法则直接计算即可,
(2)利用立方根的含义求解再求解即可.
【详解】
(1)原式=
(2)解:
【点睛】
本题考查的是实数的运算,求一个数的立方根
解析:(1);(2)
【分析】
(1)根据实数的运算法则直接计算即可,
(2)利用立方根的含义求解再求解即可.
【详解】
(1)原式=
(2)解:
【点睛】
本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.
18.(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2
解析:(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2)
∴
∴
∴;
(3),
∴,
∴,
∴.
【点睛】
本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.
19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(
解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,(对顶角相等)
∴∠2=∠3(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD(两直线平行,同位角相等)
∵∠A=∠D(已知)
∴∠D=∠BFD(等量代换)
∴AB∥CD(内错角相等,两直线平行)
∴∠B=∠C(两直线平行,内错角相等).
【点睛】
本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
20.(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:
解析:(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:(1)由点在平面直角坐标系中的位置:;
(2)的面积为;
(3)如图所示,即为所求.
【点睛】
本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.
21.(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:[16]=4;[24]=4;
(2)若[x]=1,写出满足题意的
解析:(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:;
(2)若[]=1,写出满足题意的x的整数值1,2,3;
(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.
故答案为:(1)4;4;(2)1,2,3;(3)3
【点睛】
考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.
22.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
23.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根
解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;
(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,
过O作OE∥AB,
∵AB∥CD,
∴AB∥OE∥CD,
∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,
∴∠POQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即12t=45+3t,
解得,t=5;
②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣180=45+3t,
解得,t=25;
③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣360=45+3t,
解得,t=45;
综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
展开阅读全文