1、人教新人教版七年级数学下册期中测试卷及答一、选择题19的算术平方根是()A81B3CD42下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )ABCD3在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中,假命题是( )A如果两条直线都与第三条直线平行,那么这两条直线也互相平行B在同一平面内,过一点有且只有一条直线与已知直线垂直C两条直线被第三条直线所截,同旁内角互补D两点的所有连线中,线段最短5如图,从,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A0B1C2D36下列说法正确
2、的是( )A64的平方根是8B-16的立方根是-4C只有非负数才有立方根D-3的立方根是7如图1,则;如图2,则;如图3,则;如图4,直线,点O在直线EF上,则以上结论正确的个数是( )A1个B2个C3个D4个8如图,点,点向上平移1个单位,再向右平移2个单位,得到点;点向上平移2个单位,再向右平移4个单位,得到点;点向上平移4个单位,再向右平移8个单位,得到点,按这个规律平移得到点,则点的横坐标为( )ABCD二、填空题9_10在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是_.11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_12如图,AD是EAC的
3、平分线,ADBC,B40,则DAC的度数为_13如图是长方形纸带,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是_14阅读下列解题过程:计算:解:设则由-得,运用所学到的方法计算:_.15如图,已知,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为_16如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,的等腰直角三角形若三角形的顶点坐标分别为,则按图中规律,点的坐标为_三、解答题17(1)计算:(2)解方程:18求下列各式中的x:(1); (2); (3)19请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,12,AD求证:BC
4、证明:12,(已知)又:13,( )2_(等量代换)(同位角相等,两直线平行)ABFD( )AD(已知)D_(等量代换)_CD( )BC( )20如图,已知在平面直角坐标系中的位置如图所示(1)写出三个顶点的坐标;(2)求出的面积;(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的21对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:3,3(1)仿照以上方法计算: ; (2)若1,写出满足题意的x的整数值 (3)如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次31,这时候结果为1对145连续求根整数, 次之后结果为122工人师傅准备从一
5、块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)23已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 【参考答案】一、选择题1B解析:B
6、【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为【详解】解:=3,故选:B【点睛】本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别2B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等
7、有关知识,熟练掌握平移的性质是解答本题的关键.3B【分析】根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答【详解】解:设点P纵坐标为y,点向下平移4个单位后的坐标是,点的坐标为,点在第二象限故选:B【点睛】本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键4C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案【详解】A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,选项A是真命题,故不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,选项B是真命
8、题,故不符合题意;C.两条直线被第三条直线所截,同旁内角不一定互补,选项C是假命题,故符合题意;D. 两点的所有连线中,线段最短,选项D是真命题,故不符合题意故选:C【点睛】本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理5D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可【详解】解:如图所示:(1)当1=2,则3=2,故DBEC,则D=4;当C=D,故4=C,则DFAC,可得:A=F,即可证得;(2)当1=2,则3=2,故DBEC,则D=4,当A=F,故DFAC,则4=
9、C,故可得:C=D,即可证得;(3)当A=F,故DFAC,则4=C,当C=D,则4=D,故DBEC,则2=3,可得:1=2,即可证得.故正确的有3个故选:D【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键6D【分析】根据平方根和立方根的定义逐项判断即可得【详解】A、64的平方根是,则此项说法错误,不符题意;B、因为 ,所以的立方根不是,此项说法错误,不符题意;C、任何实数都有立方根,则此项说法错误,不符题意;D、因为,所以的立方根是,此项说法正确,符合题意;故选:D【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键7B【分析】如图1所示,过点E作E
10、F/AB,由平行线的性质即可得到A+AEF=180,C+CEF=180,则A+C+AEC=360,故错误;如图2所示,过点P作PE/AB,由平行线的性质即可得到A=APE=180,C=CPE,再由APC=APE=CPE,即可得到APC=A-C,即可判断;如图3所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,1=CEF,再由AEF+CEF=AEC,即可判断 ;由平行线的性质即可得到,再由,即可判断【详解】解:如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,C+CEF=180,A+AEF+C+CEF=360,又AEF+CEF=AEC,A+C+AE
11、C=360,故错误;如图所示,过点P作PE/AB,AB/CD,AB/CD/PE,A=APE=180,C=CPE,又APC=APE=CPE,APC=A-C,故正确;如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,1=CEF,又AEF+CEF=AEC,180-A+1=AEC,故错误;,故正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8A【分析】根据平移方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标【详解】点的横坐标为,点的横坐为标,点的横坐标为,点的横坐标为,按这个规律平移得到点的横坐标为,点解析:A【分析】根据平移
12、方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标【详解】点的横坐标为,点的横坐为标,点的横坐标为,点的横坐标为,按这个规律平移得到点的横坐标为,点的横坐标为,故选A【点睛】本题考查了点的平移,坐标规律,找到规律是解题的关键二、填空题96【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键解析:6【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键10(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐
13、标互为相反数可得答案.【详解】点P(3,2)关于x轴对称的点Q的坐标是(3,2).故答案为:(3,2).【点解析:(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(3,2)关于x轴对称的点Q的坐标是(3,2).故答案为:(3,2).【点睛】本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.111+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和
14、,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和1240【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=
15、40,AD是EAC的平解析:40【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=40,AD是EAC的平分线,DAC=EAD=40,故答案为:40【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键13180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:A解析:180-3【分析】由ADBC,利用平行线的性质可得出BF
16、E和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:ADBC,BFE=DEF=,CFE=180-DEF=180-,图中CFG=CFE-BFE=180-=180-2,图中CFE=CFG-BFE=180-2-=180-3故答案为:180-3【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键14.【分析】设S=,等号两边都乘以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:.【分析】设S=,等号两边都乘
17、以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决15【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直解析:【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直线BC的解析式为,把,代入得:,解得:,故BC的解析式为,当时,故与轴的交点坐标为;故答案是【点睛】本题主要考查了用待定系数法求一
18、次函数解析式、绝对值的非负性、坐标与图形的性质,准确计算是解题的关键16【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边解析:【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6A7A9=8,A5A7=6,A3A5=4A3A7= A5A7- A3A5=2A3A7= A7A9- A3A7=
19、6又A3与原点重合A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键18(1);(2)1;(3)-1【分析】(1)根据立方根
20、的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可【详解】解:(1), ,;(2解析:(1);(2)1;(3)-1【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可【详解】解:(1), ,;(2); (3),【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键19对顶角相等;3;两直线平行,同位角相等;BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(解析:对顶角相等;3;两直线平行,同位角相等;
21、BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可【详解】证明:12,(已知)又:13,(对顶角相等)23(等量代换)(同位角相等,两直线平行)ABFD(两直线平行,同位角相等)AD(已知)DBFD(等量代换)ABCD(内错角相等,两直线平行)BC(两直线平行,内错角相等)【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键20(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:解析
22、:(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:(1)由点在平面直角坐标系中的位置:;(2)的面积为;(3)如图所示,即为所求【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键21(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值【详解】解:(1)仿照以上方法计算:16=4;24=4;(2)若x1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值【详
23、解】解:(1)仿照以上方法计算:;(2)若1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键22(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3
24、a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题23(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作
25、OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题