1、人教版七年级数学下册期中模拟复习知识点大全完整一、选择题19的算术平方根为()A9BC3D2下列各组图形可以通过平移互相得到的是()ABCD3若点在第四象限内,则点的坐标可能是( )ABCD4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,直线,被直线,所截,若,则的度数是( )ABCD6下列说法错误的是()A3的平方根是B1的立方根是1C0.1是0.01的一个平方根D算术平方根是本身的数只有0和17如图,将木条,与钉在一起,要使木条与平行,木条顺时针旋转的度数至少是( )ABCD8如图,在平面直角坐标系中,半径均为
2、1个单位长度的半圆O1,O2,O3,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是()A(2020,1)B(2021,0)C(2021,1)D(2022,0)二、填空题9的算术平方根为_10若点A(1m,1n)与点B(3,2)关于y轴对称,则(mn)2020的值是_11如图,在ABC中,ACB90,AD是ABC的角平分线,BC10cm,BD:DC3:2,则点D到AB的距离为_12如图,直线,则_13如图为一张纸片沿直线折成的V字形图案,已知图中,则_14若,且a,b是两个连续的整数,则a+b的值为_15若P(2a,2
3、a+3)到两坐标轴的距离相等,则点P的坐标是_16如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0),则P2020的坐标是_三、解答题17计算下列各题:(1); (2)-;(3)-+.18求下列各式中x的值(1)4x264;(2)3(x1)3+24019如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由证明:于点,于点(已知),(_),(_),(_),(已知)(_),_(_)_(等量代换)20在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如
4、图所示,其中点M的坐标为(3,1),点N的坐标为(3,2)(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B画出平移后的线段AB点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求ABC的面积21已知:a是的小数部分,b是的小数部分(1)求a、b的值;(2)求4a+4b+5的平方根22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和23已知,如
5、图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由24在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与
6、之间的数量关系,并说明理由.【参考答案】一、选择题1C解析:C【分析】根据算术平方根的定义即可得【详解】解:,的算术平方根为3,故选:C【点睛】本题考查了算术平方根,熟记定义是解题关键2C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键3B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐
7、标为负即可得出答案【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,故选:B【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5C【分析】首先证明a
8、b,推出45,求出5即可【详解】解:12,ab,45,5180355,455,故选:C【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型6A【分析】根据平方根、立方根、算术平方根的概念进行判断即可【详解】解:A、3的平方根是,原说法错误,故此选项符合题意;B、1的立方根是1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意故选:A【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键7B【分析】根据两直
9、线平行同旁内角互补和对顶角相等,求出旋转后2的同旁内角的度数,然后利用对顶角相等旋转后1的度数,继而用旋转后1减去110即可得到木条a旋转的度数【详解】解:要使木条a与b平行,旋转后12180,250,旋转后118050130,当1需变为130 ,木条a至少旋转:13011020,故选B【点睛】本题考查了旋转的性质及平行线的性质:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补;夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角8C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标【详解】半径为1个单位长度
10、的半圆的周长为:,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标【详解】半径为1个单位长度的半圆的周长为:,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐
11、标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),可得移动4次图象完成一个循环,20214=5051,点P运动到2021秒时的坐标是(2021,1),故选:C【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题二、填空题94【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的
12、意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别.101【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,m=2,n=-1,(mn)2020=(2-1)2020=1;故
13、答案为:1【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键114cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm解析:4cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm12120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】解析:120【分析】
14、延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键1370【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+2解析:70【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+22=180是解答本题的关键1413【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解
15、:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到
16、两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.16(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而得到P2020(673
17、,-1)【详解】解:由图可得,P6(2,0),P12(4,0),P6n(2n,0),P6n+4(2n+1,-1),20166=336,P6336(2336,0),即P2016(672,0),P2020(673,-1)故答案为:(673,-1)【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0)三、解答题17(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,
18、再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)解析:(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查
19、了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADE解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADEG,由平行线的性质得到1=2,等量代换得到E=2,由平行线的性质得到E=3,等量代换即可得到结论【详解】证明:ADBC于点D,EGBC于点G(已知), ADC=EGC=90(
20、垂直的定义),ADEG(同位角相等,两直线平行),1=2(两直线平行,内错角相等),E=1(已知),E=2(等量代换),ADEG,E=3(两直线平行,同位角相等),2=3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键20(1)右,3,上,5(答案不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解【详解析:(1)右,3,上,5(答案
21、不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解【详解】解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;N(3,-2),将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)点B的坐标为(6,3);(2)如图,过点B作BEx轴于点E,过点A作ADy轴交EB的延长线于点D,则四边形AOED是矩形,A (0,4),B (6, 3), C(4,0)E (6,0),
22、 D (6,4) AO= 4, CO= 4, EO=6, CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1, 【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键21(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,解析:(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,485,a是的小数部分,b是的小数部分,
23、a8+113,b844(2),4a+4b+5的平方根为:3【点睛】本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即
24、可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键23(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2解析:(1)35,35,平行
25、;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=M
26、NF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键24(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=5
27、0;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,D
28、F平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的
29、性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:A
30、G平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.