资源描述
人教版七年级数学下册期末复习试卷(附答案)
一、选择题
1.下列图形中,有关角的说法正确的是( )
A.∠1与∠2是同位角 B.∠3与∠4是内错角
C.∠3与∠5是对顶角 D.∠4与∠5相等
2.在下列现象中,属于平移的是( ).
A.荡秋千运动
B.月亮绕地球运动
C.操场上红旗的飘动
D.教室可移动黑板的左右移动
3.点A(-2,-4)所在象限为( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( )
A.0个 B.1个 C.2个. D.3个
5.如图所示,,三角板如图放置,其中,若,则的度数是( )
A. B. C. D.
6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )
A. B. C.2 D.3
7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )
A.120° B.135° C.150° D.160°
8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.已知=2.493, =7.882,则=______________.
十、填空题
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
十一、填空题
11.如图中,,,AD、AF分别是的角平分线和高,________.
十二、填空题
12.如图,,,,则的度数为___________.
十三、填空题
13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________.
十四、填空题
14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________.
十五、填空题
15.,则在第_____象限.
十六、填空题
16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________.
十七、解答题
17.计算:(1)|2−|++2;(2)已知(x–2)2=16,求x的值.
十八、解答题
18.求下列各式中的x值:
(1)169x2=144;
(2)(x-2)2-36=0.
十九、解答题
19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.
请在下列括号中填上理由:
证明:因为(已知),所以(_______).
又因为(已知),所以,即,
所以_______(同位角相等,两直线平行),所以(_______).
二十、解答题
20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:
(1)平移后的三个顶点坐标分别为:______,______,______;
(2)画出平移后三角形;
(3)求三角形的面积.
二十一、解答题
21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分.
请解答下列问题:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b-的值;
(3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二十三、解答题
23.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
二十四、解答题
24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
二十五、解答题
25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设.
(1)如图①,当点在边上,且时,则__________,__________;
(2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;
(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角、内错角、对顶角的定义判断即可求解.
【详解】
A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;
B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;
C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;
D、∠4与∠5不相等,原说法错误,故此选项不符合题意;
故选:C.
【点睛】
本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.
2.D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室
解析:D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室可移动黑板的左右移动是平移,故本选项正确.
故选:D.
【点睛】
本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.
3.C
【分析】
先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.
【详解】
A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,
所以点A在第三象限.
故选C.
【点睛】
本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.
【详解】
解:①对顶角相等,原命题是真命题;
②两直线平行,同位角相等,不是真命题;
③两点之间,线段最短,原命题不是真命题;
④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题.
故选:C.
【点睛】
此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.B
【分析】
作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.
【详解】
解:作BD∥l1,如图所示:
∵BD∥l1,∠1=40°,
∴∠1=∠ABD=40°,
又∵l1∥l2,
∴BD∥l2,
∴∠CBD=∠2,
又∵∠CBA=∠CBD+∠ABD=90°,
∴∠CBD=50°,
∴∠2=50°.
故选:B.
【点睛】
本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.
6.A
【分析】
根据计算程序图计算即可.
【详解】
解:∵当x=64时,,,2是有理数,
∴当x=2时,算术平方根为是无理数,
∴y=,
故选:A.
【点睛】
此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.
7.D
【分析】
如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.
【详解】
解:如图,
∵∠4=45°,∠1=25°,∠4=∠1+∠3,
∴∠3=45°-25°=20°,
∵a∥b,
∴∠2+∠3=180°,
∴∠2=180°-20°=160°,
故选:D.
【点睛】
本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.
8.D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算
解析:D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算是解题的关键.
九、填空题
9.93
【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则
点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开
解析:93
【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则
点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.
十、填空题
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
十一、填空题
11.【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵A
解析:
【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵AF是的高,∴,
在中,,
∴.
又∵在中,,,
∴,
又∵AD平分,
∴,
∴
.
故答案为:.
【点睛】
本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.
十二、填空题
12.30
【分析】
过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠
解析:30
【分析】
过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.
【详解】
解:过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,
∴∠BCD=∠BCF-∠DCF=70°-40°=30°.
故答案为:30
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.
十三、填空题
13.或
【分析】
分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.
【详解】
解:①当点Q在平行线AB,CD之间时,如图1.
∵AB//CD
∴∠PEF+
解析:或
【分析】
分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.
【详解】
解:①当点Q在平行线AB,CD之间时,如图1.
∵AB//CD
∴∠PEF+∠CFE=180°
设∠PFQ=x,由折叠可知∠EFP=x,
∵2∠CFQ=∠CFP,
∴∠PFQ=∠CFQ=x,
∴75°+3x=180°,
∴x=35°,
∴∠EFP=35°.
②当点Q在CD下方时,如图2
设∠PFQ=x,由折叠可知∠EFP=x,
∵2∠CFQ=∠CFP,
∴∠PFC=x,
∴75°+x+x=180°,
解得x=63°,
∴∠EFP=63°.
故答案为:或
【点睛】
本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.
十四、填空题
14.【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故
解析:
【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故答案为:.
【点睛】
本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.
十五、填空题
15.二
【分析】
根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.
【详解】
解:由题意得,a+2=0,b-6=0,
解得a=-2,b=6,
所以,点(-2,6)在第二象限;
故答
解析:二
【分析】
根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.
【详解】
解:由题意得,a+2=0,b-6=0,
解得a=-2,b=6,
所以,点(-2,6)在第二象限;
故答案为:二
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动
解析:
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,
第2次接着运动到点,第3次接着运动到点,
第4次运动到点,第5次接着运动到点,,
横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,
纵坐标为2,0,1,0,每4次一轮,
经过第2021次运动后,,
故动点的纵坐标为2,
经过第2021次运动后,动点的坐标是.
故答案为:.
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1)原式=;(2)x=-2或x=6.
【分析】
(1)根据绝对值、立方根和二次根式的性质计算即可;
(2)利用平方根的性质解方程即可.
【详解】
解:(1)原式;
(2)
【点睛】
本题考查平
解析:(1)原式=;(2)x=-2或x=6.
【分析】
(1)根据绝对值、立方根和二次根式的性质计算即可;
(2)利用平方根的性质解方程即可.
【详解】
解:(1)原式;
(2)
【点睛】
本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.
十八、解答题
18.(1)x=±;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【详解】
解:(1)169x2=144,
移项得:x2=,
解得:x=±.
解析:(1)x=±;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【详解】
解:(1)169x2=144,
移项得:x2=,
解得:x=±.
(2)(x-2)2-36=0,
移项得:(x-2)2=36,
开方得:x-2=6或x-2=-6
解得:x=8或x=-4.
故答案为(1)x=±;(2)x=8或x=-4.
【点睛】
本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.
十九、解答题
19.两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知
解析:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知),
所以,
即,
所以(同位角相等,两直线平行),
所以(两直线平行,同旁内角互补.
故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.
二十、解答题
20.(1),,;(2)见解析;(3)
【分析】
(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;
(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;
(3)将△ABC补全为长方形
解析:(1),,;(2)见解析;(3)
【分析】
(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;
(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;
(3)将△ABC补全为长方形,然后利用作差法求解即可.
【详解】
解:(1)平移后的三个顶点坐标分别为:,,;
(2)画出平移后三角形;
(3).
【点睛】
本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.
二十一、解答题
21.(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解
解析:(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解】
(1),
的整数部分为3,小数部分为;
(2),
的整数部分为2,小数部分为,
,
,
的整数部分为3,
,
;
(3),
的整数部分为1,小数部分为,
10+=x+y,其中x是整数,且0<y<1,
,
的相反数是:.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
二十二、解答题
22.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二十三、解答题
23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,
∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=∠FGQ,∠HFA=∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,
∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.
二十四、解答题
24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N
解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【详解】
解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】
本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
二十五、解答题
25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC
解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;
(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;
(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.
【详解】
解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.
∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,
∴∠ABC=∠ACB=40°,
∴∠ADC=∠ABC+∠BAD=40°+60°=100°.
∵∠DAC=40°,∠ADE=∠AED,
∴∠ADE=∠AED=70°,
∴∠CDE=∠ADC-∠ADE=100°-70°=30°.
故答案为60,30.
(2)∠BAD=2∠CDE,理由如下:
如图②,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACB=∠CDE+∠AED,
∴∠CDE=∠ACB-∠AED=40°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=n-100°,
∴∠BAD=2∠CDE.
(3)成立,∠BAD=2∠CDE,理由如下:
如图③,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ACD=140°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACD=∠CDE+∠AED,
∴∠CDE=∠ACD-∠AED=140°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=100°+n,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
展开阅读全文