1、完整版人教七年级数学下册期中测试题一、选择题1的平方根是()A9B9和9C3D3和32如图,ABC沿BC所在直线向右平移得到DEF,已知EC2,BF8,则平移的距离为( )A3B4C5D63在平面直角坐标系中,点所在的位置是( )A轴B轴C第一象限D第四象限4下列两个命题:过一点有且只有一条直线和已知直线平行;垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A都对B对错C都错D错对5如图所示,三角板如图放置,其中,若,则的度数是( )ABCD6下列说法正确的是( )A是分数B互为相反数的数的立方根也互为相反数C的系数是D的平方根是7如图:ABCD,OE平分BOC,OFOE,OPCD,
2、ABO40,则下列结论:OF平分BOD;POEBOF;BOE70;POB2DOF,其中结论正确的序号是( )ABCD8如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),根据这个规律探索可得,第20个点的坐标为( )A(6,4)B(6,5)C(7,3)D(7,5)二、填空题9已知x,y为实数,且,则x-y=_10已知点与点关于轴对称,则的值为_11如图,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,作PEAB于点E若PE2,则两平行线AD与BC间的距离为_12如图,平分,交于
3、,若,则的度数是_13如图,将一张长方形纸条折成如图的形状,若,则的度数为_14对于有理数a,b,规定一种新运算:ab=ab+b,如23=23+3=9下列结论:(3)4=8;若ab=ba,则a=b;方程(x4)3=6的解为x=5;(ab)c=a(bc)其中正确的是_(把所有正确的序号都填上)15若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为_16如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是
4、_三、解答题17计算(每小题4分)(1) (2)(3) (4)+|2 | + ( -1 )2017 18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x3319根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)20如图,在平面直角坐标系中,A(1,2),B(2,4),C(4,1)ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将ABC作同样的平移得到A1B1C1(1)请画出A1B1C1并写出点A1,B1,C1的坐标;(2)求A1B1C1的面积;21若的整数部分为a,小数部分
5、为b(1)求a,b的值(2)求的值22(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121m2的草坪,草坪周围用篱笆围绕现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21m2,请你根据此方案求出各小路的宽度(取整数
6、)23已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 【参考答案】一、选择题1D解析:D【分析】先化简,再根据平方根的地红衣求解【详解】解:=9,的平方根是,故选D【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方
7、根,即x2=a,那么x叫做a的平方根,记作2A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:解析:A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:A【点睛】本题考查平移的性质,掌握平移的性质是解题的关键3A【分析】由于点的纵坐标为0,则可判断点在轴上【详解】解:点的纵坐标为0,故在轴上,故选:A【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点4C【分析】
8、根据平行公理及其推论判断即可【详解】解:过直线外一点有且只有一条直线和已知直线平行,故错误;在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握5B【分析】作BDl1,根据平行线的性质得1=ABD=40,CBD=2,利用角的和差即可求解【详解】解:作BDl1,如图所示:BDl1,1=40,1=ABD=40,又l1l2,BDl2,CBD=2,又CBA=CBD+ABD=90,CBD=50,2=50故选:B【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线6B【分析】
9、根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案【详解】是无理数,A错误,互为相反数的数的立方根也互为相反数,B正确,的系数是,C错误,的平方根是8,D错误,故选B【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键7A【分析】根据ABCD可得BOD=ABO=40,利用平角得到COB=140,再根据角平分线的定义得到BOE=70,则正确;利用OPCD,ABCD,ABO=40,可得POB=50,BOF=20,FOD=20,进而可得OF平分BOD,则正确;由EOB=70,POB=50,POE=20,由BOF=P
10、OF-POB=20,进而可得POE=BOF,则正确;由可知POB=50,FOD=20,则不正确【详解】ABCD,BOD=ABO=40,COB=180-40=140,又OE平分BOC,BOE=COB=140=70,故正确;OPCD,POD=90,又ABCD,BPO=90,又ABO=40,POB=90-40=50,BOF=POF-POB=70-50=20,FOD=40-20=20,OF平分BOD,故正确;EOB=70,POB=90-40=50,POE=70-50=20,又BOF=POF-POB=70-50=20,POE=BOF,故正确;由可知POB=90-40=50,FOD=40-20=20,故P
11、OB2DOF,故不正确故结论正确的是,故选A【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依
12、此类推,则第一列有一个数,第二列有2个数,第列有个数则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为,则第20个数一定在第6列,由下到上是第4个数因而第20个点的坐标是故选:A【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目二、填空题9-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解得:x-y=-1故答案为:-1【点睛】此题考查的是非负性的应用,掌握算术平方解析:-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解
13、得:x-y=-1故答案为:-1【点睛】此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键10-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:解析:-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:-1【点睛】本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系114【分析】根据角平分线的性质以及平行线的性
14、质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,PEAB于点E,APBP,PNBC,PM=PE=2,PE=PN=2,MN=2+2=4故答案为41225【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为解析:25【分析】根
15、据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,ABDE,2355,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平
16、行线被第三条直线所截,内错角相等14【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若解析:【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若ab,则两式不相等,所以错误;方程(x4) )3=6化为3(x4)+3=6,解得x=5,所以正确;左边=(ab) c=(ab+b) )c=(ab+b)c+c=abc+bc+c右边=a(bc)=a(bc+c)=a(bc+c) +(bc+c)
17、=abc+ac+bc+c2两式不相等,所以错误综上所述,正确的说法有故答案为.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义本题主要考查学生综合分析能力、运算能力152【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离为:2故答案为:2【点睛】本题考查
18、坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的16【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,甲走过的路程为,相遇坐标为,第二次相遇又用时间为(秒),甲又走过的路程为,相遇坐标为,第3次相遇时在点A处,则以后3的倍数次相遇都在点A处,第2021次相遇地点与第2
19、次相遇地点的相同,第2021次相遇地点的坐标为故填:【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点三、解答题17(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先
20、算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2 (2)原式=(3)原式=2+(-2)+1=1 (4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移
21、项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式019;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关
22、的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键20(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2
23、)利用分割法求解即可【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2)利用分割法求解即可【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3)(2)A1B1C1的面积=33-32-12-13=【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题21(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点
24、睛】本题考查无理数的整数部分解析:(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分与小数部分问题,掌握无理数的估值方法是关键.22(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方
25、根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解【详解】解:(1)正方体有6个面且每个面都相等,正方体的一个面的面积=2 dm2正方形的棱长=dm;故答案为: dm ;(2)甲方案:设正方形的边长为xm,则x2 =121x =11正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2=121r =11圆的周长为:2= 22m 442222(2- 4 2 正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 y)2=12121 11 y =10
26、y= 取整数 y =答:根据此方案求出小路的宽度为;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;23(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45
27、时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题