1、一、解答题1(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”(理解运用)在平面直角坐标系中,(1)线段的“勾股距” ;(2)若点在第三象限,且,求并判断是否为“等距三角形”(拓展提升)(3)若点在轴上,是“等距三角形”,请直接写出的取值范围2如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由
2、3阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整证明:过点E作EFAB,则有BEF ABCD, ,FED BEDBEF+FEDB+D(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分ABC,DE平分ADC,且BE,DE所在的直线交于点E如图1,当点B在点A的左侧时,若ABC60,ADC70,求BED的度数;如图2,当点B在点A的右侧时,设ABC,ADC,请你求出BED的度数
3、(用含有,的式子表示)4如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数5已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/E
4、Q交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数6已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)7阅读型综合题对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对若实数 都取正
5、整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对(1)若,则 , ;(2)已知,若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由8先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,那么,请你猜想:59319的立方根是_位数(2)在自然数1到9这九个数字中,_,_,_猜想:59319的个位数字是9,则59319的立
6、方根的个位数字是_(3)如果划去59319后面的三位“319”得到数59,而,由此可确定59319的立方根的十位数字是_,因此59319的立方根是_(4)现在换一个数103823,你能按这种方法得出它的立方根吗?9规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(-3)(-3)(-3)(-3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(-3)(-3)(-3)(-3)记作(-3),读作“-3的圈4次方”,一般地,把 (a0)记作a,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2=_,()=_;(2)关于除方,下列说法错误的是_A任何非零数的圈
7、2次方都等于1;B对于任何正整数n,1=1;C3=4;D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(-3)=_;5=_;(-)=_(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于_;(3)算一算:()(2)()10数学中有很多的可逆的推理如果,那么利用可逆推理,已知n可求b的运算,记为,如,则,则根据定义,填空:_,_若有如下运算性质:根据运算性质填空,填空:若,则_;_;下表中与数x对应的
8、有且只有两个是错误的,请直接找出错误并改正 x1.5356891227错误的式子是_,_;分别改为_,_11观察下来等式:1223113221,1334114331,2335225332,3447337443,6228668226,在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52_25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2ab9,则用含a,b的式子表示这类“数字对称等式”的规律是_12阅读下列解题过程:为了求的值,可设
9、,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交
10、于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)15在平面直角坐标系中,点坐标为,点坐标为,过点作直线轴,垂足为,交线段于点.(1)如图1,过点作,垂足为,连接.填空:的面积为_;点为直线上一动点,当时,求点的坐标;(2)如图2,点为线段延长线上一点,连接,线段交于点,若,请直接写出点的坐标为_.16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解,所以与存在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”
11、关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17如图1,已知,点A(1,a),AHx轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足(1)填空:直接写出A、B、C三点的坐标A(_)、B(_)、C(_);直接写出三角形AOH的面积_(2)如图1,若点D(m,n)在线段OA上,证明:4mn(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动若经过
12、t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标18在平面直角坐标系中,点A(1,2),点B(a,b),且,点E(6,0),将线段AB向下平移m个单位(m0)得到线段CD,其中A、B的对应点分别为C、D(1)求点的坐标及三角形ABE的面积;(2)当线段CD与轴有公共点时,求的取值范围;(3)设三角形CDE的面积为,当时,求的取值范围19某工厂接受了20天内生产1200台GH型电子产品的总任务已知每台GH型产品由4个G型装置和3个H型装置配套组成工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加
13、工的G、H型装置数量正好全部配套组成GH型产品(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)20如图,是的平分线,和的度数满足方程组,(1)求和的度数;(2)求证:.(3)求的度数.21如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数22阅读感悟:有些关于方程组的问题,要求的结
14、果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数、满足,求和的值本题常规思路是将两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由+2可得这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数、,定义新运算:,其中、是常数,等
15、式右边是通常的加法和乘法运算已知,那么_23对a,b定义一种新运算T,规定:T(a,b)(a+2b)(ax+by)(其中x,y均为非零实数)例如:T(1,1)3x+3y(1)已知T(1,1)0,T(0,2)8,求x,y的值;(2)已知关于x,y的方程组,若a2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段OA,坐标轴上有一点B满足三角形BOA的面积为9,请直接写出点B的坐标24若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”例如:关于x的代数式
16、,当-1x 1时,代数式在x=1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1x1这个范围内,则称代数式是-1x1的“湘一代数式”(1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值(3)若关于的代数式是的“湘一代数式”,求m的取值范围25使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”例:已知方程2x31与不等式x+30,当x2时,2x32231,x+32+350同时成立,则称x2是方程2x31与不等式x+
17、30的“理想解”(1)已知,2(x+3)4,3,试判断方程2x+31的解是否是它们中某个不等式的“理想解”,写出过程;(2)若是方程x2y4与不等式的“理想解”,求x0+2y0的取值范围26如图所示,在平面直角坐标系中,点A,的坐标为,其中,满足,(1)求,的值;(2)若在轴上,且,求点坐标;(3)如果在第二象限内有一点,在什么取值范围时,的面积不大于的面积?求出在符合条件下,面积最大值时点的坐标27中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需
18、660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?28某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的
19、75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少?29已知A(0,a)、B(b,0),且+(b4)20(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足SABC15如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;如图2,若点F(m,10)满足SACF10,求m(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB8,GD6当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值30阅读以下内容
20、:已知有理数m,n满足m+n3,且求k的值三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用73消去未知数x,也可以用2+5消去未知数y求a和b的值【参考答案】*试卷处理标记,请不要删除一、解答题1(1)5;(2)dAC=11,ABC不是为“等距三角形”;(3)m4【分析】(1)根据两点之间的直角距离的定义,结合O、P两点的坐标即可得出结论;(2)根据两点之间的直角距离的定义,用含x、y的代数式表示出来
21、d(O,Q)=4,结合点Q(x,y)在第一象限,即可得出结论;(3)由点N在直线y=x+3上,设出点N的坐标为(m,m+3),通过寻找d(M,N)的最小值,得出点M(2,-1)到直线y=x+3的直角距离【详解】解:(1)由“勾股距”的定义知:dOA=|2-0|+|3-0|=2+3=5,故答案为:5;(2)dAB=|4-2|+|2-3|=2+1=3,2dAB=6,点C在第三象限,m0,n0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),dOC=2dAB,-(m+n)=6,即m+n=-6,dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC
22、=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,5+1112,11+125,12+511,ABC不是为“等距三角形”;(3)点C在x轴上时,点C(m,0),则dAC=|2-m|+3,dBC=|4-m|+2,当m2时,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若ABC是“等距三角形”,5-m+6-m=11-2m=3,解得:m=4(不合题意),又5-m+3=8-m6-m,当2m4时,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若ABC是“等距三角形”,则m+1+6-m=73,6-m+3=m+1,解得:m=4(不和题意),当m4时,dAC=m+1,d
23、BC=m-2,若ABC是“等距三角形”,则m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,m4时,ABC是“等距三角形”,综上所述:ABC是“等距三角形”时,m的取值范围为:m4【点睛】本题考查坐标与图形的性质,关键是对“勾股距”和“等距三角形”新概念的理解,运用“勾股距”和“等距三角形”解题2(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情
24、况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,Q
25、CF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内
26、角互补;两直线平行,内错角相等是解题的关键3(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点A的左侧时,根据ABC60,ADC70,参考小亮思考问题的方法即可求BED的度数;如图2,过点E作EFAB,当点B在点A的右侧时,ABC,ADC,参考小亮思考问题的方法即可求出BED的度数【详解】解:(1)过点E作EFAB,则有BEFB,ABCD,EFCD,FEDD,BEDBEF+FEDB+D;故答案为:B;EF;CD;D;(2)如图1,过点E作EFAB,有BEFEBAABCD,EFCDFEDEDCBEF+FED
27、EBA+EDC即BEDEBA+EDC,BE平分ABC,DE平分ADC,EBAABC30,EDCADC35,BEDEBA+EDC65答:BED的度数为65;如图2,过点E作EFAB,有BEF+EBA180BEF180EBA,ABCD,EFCDFEDEDCBEF+FED180EBA+EDC即BED180EBA+EDC,BE平分ABC,DE平分ADC,EBAABC,EDCADC,BED180EBA+EDC180答:BED的度数为180【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质4(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两
28、直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMA
29、CD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键5(1)见解析;(2)PEQ+2PFQ360;(3)3
30、0【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,即PEQ+2(FQD+BPF)=360,PEQ+2PFQ36
31、0(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键6(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的
32、定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质7(1)5,3;(2)有正格数对,正格数对为【分析】(1)根据定义,直接代入求解即可;(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可【详解】解:(1)5,3故答案为:5,3;(2)有正格数对将代入,得出,解得,则,为正整数且为整数,正格数对为:【点睛】本题考
33、查的知识点是实数的运算,理解新定义是解此题的关键8(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可【详解】(1)1000593191000000,59319的立方根是两位数;(2)125,343,729,59319的个位数字是9,则59319的立方根的个位数字是9;(3),且59319的立方根是两位数,59319的立方根的十位数
34、字是3,又59319的立方根的个位数字是9,59319的立方根是39;(4)10001038231000000,103823的立方根是两位数;125,343,729,103823的个位数字是3,则103823的立方根的个位数字是7;,且103823的立方根是两位数,103823的立方根的十位数字是4,又103823的立方根的个位数字是7,103823的立方根是47【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数9初步探究:(1),8;(2)C;深入思考:(1),;(2);(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2
35、)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2=222=()=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;B:因为多少个1相除都是1,所以对于任何正整数n,1都等于1,故选项B错误;C:3=3333=,4=444=,34,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;
36、故答案选择:C.深入思考:(1)(-3)=(-3)(-3)(-3) (-3)=5=555555=(-)=(2)a=aaaa=(3)原式=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.101,3;0.6020;0.6990;f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c【分析】根据定义可得:f(10b)=b,即可求得结论;根据运算性质:f(mn)=f(m)+f(n),f()=f(n)-f(m)进行计算;通过9=32,27=33,可以判断f(3)是否正确,同样依据5=,假设f(5)正确,可以求得f
37、(2)的值,即可通过f(8),f(12)作出判断【详解】解:根据定义知:f(10b)=b,f(10)=1,f(103)=3故答案为:1,3根据运算性质,得:f(4)=f(22)=f(2)+f(2)=2f(2)=0.30102=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990故答案为:0.6020;0.6990若f(3)2a-b,则f(9)=2f(3)4a-2b,f(27)=3f(3)6a-3b,从而表中有三个对应的f(x)是错误的,与题设矛盾,f(3)=2a-b;若f(5)a+c,则f(2)=1-f(5)1-a-c,f(8)=3f(2)3-3a-3c,f(6
38、)=f(3)+f(2)1+a-b-c,表中也有三个对应的f(x)是错误的,与题设矛盾,f(5)=a+c,表中只有f(1.5)和f(12)的对应值是错误的,应改正为:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c9=32,27=33,f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算11(1)275,572
39、;(2)(10b+a)100a+10(a+b)+b=(10a+b100b+10(a+b)+a.【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可【详解】解:(1)5+2=7,左边的三位数是275,右边的三位数是572,52275=57225,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右
40、边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)100a+10(a+b)+b=(10a+b100b+10(a+b)+a故答案为275,572;(10b+a)100a+10(a+b)+b=(10a+b100b+10(a+b)+a【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键12(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可【详解】解:(1)根据得:(2)设,则,即:(3)设,则,即:同理可求【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键13(1)(-2,0);(2)4秒;(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论(2)判断出PB=CD,即可得出结论;根据PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标【