收藏 分销(赏)

七年级下册数学-期末试卷(Word版-含解析).doc

上传人:天**** 文档编号:5135894 上传时间:2024-10-26 格式:DOC 页数:23 大小:514.04KB
下载 相关 举报
七年级下册数学-期末试卷(Word版-含解析).doc_第1页
第1页 / 共23页
七年级下册数学-期末试卷(Word版-含解析).doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述
七年级下册数学 期末试卷(Word版 含解析) 一、选择题 1.如图,直线 a、b 被直线 c 所截,下列说法不正确的是 ( ) A.∠1 和∠4 是内错角 B.∠2 和∠3 是同旁内角 C.∠1 和∠3 是同位角 D.∠3 和∠4 互为邻补角 2.下列现象中是平移的是( ) A.将一张纸对折 B.电梯的上下移动 C.摩天轮的运动 D.翻开书的封面 3.在平面直角坐标系中,点A(1,﹣2021)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( ) A.①② B.①④ C.①②③ D.①②④ 5.一副直角三角尺叠放如图1所示,现将45°的三角尺固定不动,将含30°的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则()其它所有可能符合条件的度数为( ) A.60°和135° B.60°和105° C.105°和45° D.以上都有可能 6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( ) A.3 B.4 C.5 D.6 7.如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是(   ) A.①②③ B.①②④ C.①③④ D.①②③④ 8.若点在轴上,则点的坐标为( ) A. B. C. D. 二、填空题 9.=________. 10.点P关于y轴的对称点是(3,﹣2),则P关于原点的对称点是__. 11.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ADB=__度. 12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______. 13.如图①是长方形纸带,,将纸带沿折叠成图②,再沿折叠成图③,则图③中的的度数是________. 14.如图,在纸面上有一数轴,点A表示的数为﹣1,点B表示的数为3,点C表示的数为.若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_______. 15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__. 16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______. 三、解答题 17.计算(1) (2) 18.已知a+b=5,ab=2,求下列各式的值. (1)a2+b2; (2)(a﹣b)2. 19.如图,四边形 ABCD 中,ÐA = ÐC = 90° ,BE ,DF 分别是ÐABC ,ÐADC 的平分线. 试说明 BE // DF .请补充说明过程,并在括号内填上相应理由. 解:在四边形 ABCD 中, ÐA + ÐABC + ÐC + ÐADC = 360° ∵ÐA = ÐC = 90°(已知) ∴ÐABC +ÐADC= ° , ∵BE , DF 分别是ÐABC , ÐADC 的平分线, ∴Ð1 =ÐABC , Ð2= ÐADC ( ) ∴Ð1+Ð2= (ÐABC + ÐADC) ∴Ð1+Ð2= ° ∵在△FCD 中, ÐC = 90° , ∴ÐDFC + Ð2 = 90° ( ) ∵Ð1+Ð2=90° (已证) ∴Ð1=ÐDFC ( ) ∴BE ∥ DF . ( ) 20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上, (1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标; (2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标. 21.数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 24.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 25.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 26.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角. 【详解】 解:A、和不是内错角,此选项符合题意; B、和是同旁内角,此选项不符合题意; C、和是同位角,此选项不符合题意; D、和是邻补角,此选项不符合题意; 故选A. 【点睛】 本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键. 2.B 【分析】 根据平移的概念,依次判断即可得到答案; 【详解】 解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断: A、将一张纸对折,不符合平移定 解析:B 【分析】 根据平移的概念,依次判断即可得到答案; 【详解】 解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断: A、将一张纸对折,不符合平移定义,故本选项错误; B、电梯的上下移动,符合平移的定义,故本选项正确; C、摩天轮的运动,不符合平移定义,故本选项错误; D、翻开的封面,不符合平移的定义,故本选项错误. 故选B. 【点睛】 本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移. 3.D 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:∵点A(1,-2021), ∴A点横坐标是正数,纵坐标是负数, ∴A点在第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A 【分析】 根据两直线的位置关系即可判断. 【详解】 ①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误. 故①②正确,故选A. 【点睛】 此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系. 5.D 【分析】 根据题意画出图形,再由平行线的性质定理即可得出结论. 【详解】 解:如图 当∥时,; 当∥时,; 当∥ 时,∵, ∴; 当∥时,∵ , ∴. 故选:. 【点睛】 本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键. 6.A 【分析】 根据平方根和立方根的性质,以及无理数的性质判断选项的正确性. 【详解】 解:立方根等于本身的数有:,1,0,故①正确; 平方根等于本身的数有:0,故②错误; 两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确; 是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确. 故选:A. 【点睛】 本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.A 【分析】 根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确. 【详解】 ③∵AB∥CD, ∴∠BOD=∠ABO=40°, ∴∠COB=180°-40°=140°, 又∵OE平分∠BOC, ∴∠BOE=∠COB=×140°=70°, 故③正确; ①∵OP⊥CD, ∴∠POD=90°, 又∵AB∥CD, ∴∠BPO=90°, 又∵∠ABO=40°, ∴∠POB=90°-40°=50°, ∴∠BOF=∠POF-∠POB=70°-50°=20°, ∠FOD=40°-20°=20°, ∴OF平分∠BOD, 故①正确; ②∵∠EOB=70°,∠POB=90°-40°=50°, ∴∠POE=70°-50°=20°, 又∵∠BOF=∠POF-∠POB=70°-50°=20°, ∴∠POE=∠BOF, 故②正确; ④由①可知∠POB=90°-40°=50°, ∠FOD=40°-20°=20°, 故∠POB≠2∠DOF, 故④不正确. 故结论正确的是①②③, 故选A. 【点睛】 本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答. 8.C 【分析】 点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标. 【详解】 解:∵在轴上 ∴ ∴ ∴ ∴点的坐标为 故选:C 【点睛】 本题考查平面直角坐标系中,坐标 解析:C 【分析】 点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标. 【详解】 解:∵在轴上 ∴ ∴ ∴ ∴点的坐标为 故选:C 【点睛】 本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键. 二、填空题 9.6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 10.【分析】 直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案. 【详解】 解:∵点P关于y轴的对称点是, ∴点, 则P关于原点的对称点是. 故答案为:. 【点睛】 本题考 解析: 【分析】 直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案. 【详解】 解:∵点P关于y轴的对称点是, ∴点, 则P关于原点的对称点是. 故答案为:. 【点睛】 本题考查关于x轴、y轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键. 11.101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50° 解析:101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50°−72°=58°, ∵BD是△ABC的一条角平分线, ∴∠ABD=29°, ∴∠ADB=180°−50°−29°=101°. 故答案为:101. 【点睛】 此题考查三角形内角和定理,解题关键在于掌握其定理. 12.【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三 解析: 【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 13.180°-3α 【分析】 由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数. 【详解】 解:∵A 解析:180°-3α 【分析】 由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数. 【详解】 解:∵AD∥BC, ∴∠BFE=∠DEF=α,∠CFE=180°-∠DEF=180°-α, ∴图②中∠CFG=∠CFE-∠BFE=180°-α-α=180°-2α, ∴图③中∠CFE=∠CFG-∠BFE=180°-2α-α=180°-3α. 故答案为:180°-3α. 【点睛】 本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键. 14.4+或6﹣或2﹣. 【分析】 先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可. 【详解】 解:第一次折叠后与A重合的点表示的数是:3+ 解析:4+或6﹣或2﹣. 【分析】 先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可. 【详解】 解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7. 与C重合的点表示的数:3+(3﹣)=6﹣. 第二次折叠,折叠点表示的数为:(3+7)=5或(﹣1+3)=1. 此时与数轴上的点C重合的点表示的数为: 5+(5﹣6+)=4+或1﹣(﹣1)=2﹣. 故答案为:4+或6﹣或2﹣. 【点睛】 本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键. 15.(-4,8) 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解. 【详解】 解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12, ∴-2a 解析:(-4,8) 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解. 【详解】 解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12, ∴-2a+2-3a=12, 解得a=-2, ∴2a=-4,2-3a=8, ∴点P的坐标为(-4,8). 故答案为:(-4,8). 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 16.【分析】 根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可. 【详解】 解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边 解析: 【分析】 根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可. 【详解】 解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6 ∴A7A9=8,A5A7=6,A3A5=4 ∴A3A7= A5A7- A3A5=2 ∴A3A7= A7A9- A3A7=6 又∵A3与原点重合 ∴A9的坐标为(6,0) 故答案为:(6,0). 【点睛】 本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解. 三、解答题 17.(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . ( 解析:(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . (2), , . 【点睛】 本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用. 18.(1)21;(2)17 【分析】 (1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解; (1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解. 【详解】 解析:(1)21;(2)17 【分析】 (1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解; (1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解. 【详解】 解:(1)∵a+b=5,ab=2, ∴a2+b2=(a+b)2﹣2ab=52﹣2×2=21; (2))∵a+b=5,ab=2, ∴(a﹣b)2=a2+b2-2ab=21-2×2=17. 【点睛】 本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键. 19.见解析 【分析】 根据四边形的内角和,可得∠ABC+∠ADC=180°,然后根据角平分线的定义可得,∠1+∠2=90°,再根据三角形内角和得到,∠DFC+∠2=90°,等量代换∠1=∠DFC,即可判 解析:见解析 【分析】 根据四边形的内角和,可得∠ABC+∠ADC=180°,然后根据角平分线的定义可得,∠1+∠2=90°,再根据三角形内角和得到,∠DFC+∠2=90°,等量代换∠1=∠DFC,即可判定BE∥DF. 【详解】 在四边形ABCD中,∠A+∠ABC+∠C+∠ADC=360°. ∵∠A=∠C=90°, ∴∠ABC+∠ADC=180°(四边形的内角和是360°), ∵BE,DF分别是∠ABC,∠ADC的平分线, ∴Ð1 =ÐABC , Ð2= ÐADC(角平分线定义) ∴Ð1+Ð2= (ÐABC + ÐADC) ∴∠1+∠2=90°, 在△FCD中,∠C=90°, ∴∠DFC+∠2=90°(三角形的内角和是180°), ∵∠1+∠2=90°(已证), ∴∠1=∠DFC(等量代换), ∴BE∥DF.(同位角相等,两直线平行 ). 【点睛】 本题主要考查了平行线的判定与性质,关键是掌握三角形、四边形的内角和,以及同位角相等,两直线平行. 20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可. ( 解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可. (2)分别作出A′,B′,C′即可解决问题. 【详解】 解:(1)平面直角坐标系如图所示:B(0,1). (2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1). 【点睛】 本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.26 【分析】 先估算出的范围,再求出x,y的值,即可解答. 【详解】 解:∵, ∴的整数部分是1,小数部分是 ∴的整数部分是9,小数部分是, ∴x=9,y=, ∴=3×9+(-)2019=27+( 解析:26 【分析】 先估算出的范围,再求出x,y的值,即可解答. 【详解】 解:∵, ∴的整数部分是1,小数部分是 ∴的整数部分是9,小数部分是, ∴x=9,y=, ∴=3×9+(-)2019=27+(-1)2019=27-1=26. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算出的范围. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线   AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键. 26.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1) 解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论; (2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论. 试题解析:解:解决问题 连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6. 拓展延伸: 解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2. (2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服