资源描述
人教版七年级数学下册期末复习题(含解析)
一、选择题
1.25的平方根是()
A.±5 B.5 C.± D.﹣5
2.下列四幅名车标志设计中能用平移得到的是( )
A.奥迪 B.本田
C.奔驰 D.铃木
3.在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②一个三角形被截成两个三角形,每个三角形的内角和是90度;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是( )
A.2个 B.3个 C.4个 D.5个
5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )
A.35° B.45° C.50° D.55°
6.下列说法中正确的是( )
A.有理数和数轴上的点一一对应 B.0.304精确到十分位是0.30
C.立方根是本身的数只有0 D.平方根是本身的数只有0
7.如图,把一个长方形纸条沿折叠,已知,,则为( )
A.30° B.28° C.29° D.26°
8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.的算术平方根是____.
十、填空题
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
十一、填空题
11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________.
十二、填空题
12.如图,,,,则∠CAD的度数为____________.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.定义一种新运算“”规则如下:对于两个有理数,,,若,则______
十五、填空题
15.若点P在轴上,则点P的坐标为____.
十六、填空题
16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.
十七、解答题
17.计算下列各题:
(1)+-
(2).
十八、解答题
18.求下列各式中实数的x值.
(1)25x2﹣36=0
(2)|x+2|=π
十九、解答题
19.如图,,试说明.
证明:∵(已知)
∴________=________(垂直定义)
∴________//________(________________)
∵(________)
∴________//________(________________)
∴________(平行于同一直线的两条直线互相平行)
∴(________________________).
二十、解答题
20.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题:
(1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1.
(2)三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 .
(3)三角形ABC的面积是 .
二十一、解答题
21.计算:
(1); (2)﹣12+(﹣2)3×;
(3)已知实数a、b满足+|b﹣1|=0,求a2017+b2018的值.
(4)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.
二十二、解答题
22.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
二十三、解答题
23.如图1,点在直线上,点在直线上,点在,之间,且满足.
(1)证明:;
(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;
(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.
二十四、解答题
24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
二十五、解答题
25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据平方根的定义,进行计算求解即可.
【详解】
解:∵(±5)2=25
∴25的平方根±5.
故选A.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.
2.A
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、是经过平移得到的,故符合题意;
B、不是经过平移得
解析:A
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、是经过平移得到的,故符合题意;
B、不是经过平移得到的,故的符合题意;
C、不是经过平移得到的,故不符合题意;
D、不是经过平移得到的,故不符合题意;
故选A.
【点睛】
本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.
3.B
【分析】
根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答.
【详解】
解:设点P纵坐标为y,
点向下平移4个单位后的坐标是,
,
∴
点的坐标为,
点在第二象限.
故选:B.
【点睛】
本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键.
4.B
【分析】
依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.
【详解】
解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;
②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;
③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;
④两个无理数的和不一定是无理数,是假命题;
⑤坐标平面内的点与有序数对是一一对应的,是真命题;
其中真命题是①③⑤,个数是3.
故选:.
【点睛】
本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.
5.A
【分析】
过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.
【详解】
解:过点E作EF∥AB,则EF∥CD,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.D
【分析】
根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.
【详解】
解:A. 实数和数轴上的点一一对应,原说法错误;
B. 0.304精确到十分位是0.3,原说法错误;
C. 立方根是本身的数是0、±1,原说法错误;
D. 平方根是本身的数只有0,正确,
故选:D.
【点睛】
本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.
7.C
【分析】
由 AE平行BD,可得∠AED=∠ADB=32°,可求∠BAE=122°,由折叠,可得∠BAF=∠EAF,可求∠EAF=61°即可
【详解】
∵AE//BD,
∴∠AED=∠ADB=32°,
∴∠BAE=∠BAD+∠DAE=90°+32°=122°,
∵折叠,
∴∠BAF=∠EAF,
∴2∠EAF=∠BAE=122°
∴∠EAF=61°
∴∠DAF=∠EAF-∠EAD=61°-32°=29°
故选择C
【点睛】
本题考查平行线性质,掌握折叠性质,平行线性质是解题关键.
8.D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算
解析:D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算是解题的关键.
九、填空题
9.9;
【分析】
根据算术平方根的定义计算可得.
【详解】
∵(−9)2=81,
∴(−9)2的算术平方根是9,
故答案为:9
【点睛】
本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.
解析:9;
【分析】
根据算术平方根的定义计算可得.
【详解】
∵(−9)2=81,
∴(−9)2的算术平方根是9,
故答案为:9
【点睛】
本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.
十、填空题
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
十一、填空题
11.10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即
解析:10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.
【详解】
解:当高AD在△ABC的内部时.
∵∠B=40°,∠C=60°,
∴∠BAC=180°-40°-60°=80°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=40°,
∵AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°-∠B=50°,
∴∠EAD=∠BAD-∠BAE=50°-40°=10°.
当高AD在△ABC的外部时.
同法可得∠EAD=10°+30°=40°
故答案为10°或40°.
【点睛】
此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数
十二、填空题
12.【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是
解析:
【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.【分析】
根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.
【详解】
解:由题意得:(5x-x)⊙(−2)=−1,
∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得
解析:
【分析】
根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.
【详解】
解:由题意得:(5x-x)⊙(−2)=−1,
∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:,
故答案为.
【点睛】
本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .
十五、填空题
15.(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐
解析:(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐标为(4,0).
故答案为:(4,0).
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
十六、填空题
16.(1617,2)
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-
解析:(1617,2)
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.
【详解】
解:前五次运动横坐标分别为:1,2,2,4,4,
第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,
…
∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,
前五次运动纵坐标分别2,0,-2,-2,0,
第6到10次运动纵坐标分别为2,0,-2,-2,0,
…
∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,
∵2021÷5=404…1,
∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,
∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).
故答案为:(1617,2).
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1)1 (2)
【详解】
试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;
试题解析:
(1)原式=;
(2)原式=-3-0-+0.5+
=
解析:(1)1 (2)
【详解】
试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;
试题解析:
(1)原式=;
(2)原式=-3-0-+0.5+
=
十八、解答题
18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=
解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=36,
x2=,
x=±;
(2)|x+2|=π,
x+2=±π,
x=﹣2﹣π或x=﹣2+π.
【点睛】
本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数.
十九、解答题
19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.
【分析】
根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.
【详解】
解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.
【分析】
根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.
【详解】
证明:∵(已知),
∴(垂直定义),
∴(同位角相等,两直线平行),
∵(已知),
∴(内错角相等,两直线平行),
∴(平行于同一直线的两条直线互相平行),
∴(两直线平行,同位角相等).
故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等.
【点睛】
本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键.
二十、解答题
20.(1)5,下,4;(2)(,);(3)7.
【分析】
(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.
【详解】
解:(1)根据题图
解析:(1)5,下,4;(2)(,);(3)7.
【分析】
(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.
【详解】
解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1;
故答案是:5,下,4;
(2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,),
故答案是:(,);
(3),
故答案是:7.
【点睛】
本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.
二十一、解答题
21.(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平
解析:(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;
直接利用2<的范围进而得出a,b的值,即可得出答案.
【详解】
解:
;
;
,
,,
;
的整数部分为a,的小数部分为b,
,,
.
【点睛】
此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.
二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据
解析:(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;
(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.
【详解】
解:(1)如图,连接,
,
,
,
,
(2),
理由:作,则 如图,
设,则.
,,
,,
.
即.
(3)作,则 如图,设,则.
,
,
,
,
,
故答案为.
【点睛】
本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.
二十四、解答题
24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N
解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【详解】
解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】
本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
二十五、解答题
25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文