收藏 分销(赏)

浙江省宁波市2021年中考数学试卷(解析版).doc

上传人:Fis****915 文档编号:505014 上传时间:2023-10-24 格式:DOC 页数:26 大小:2.31MB
下载 相关 举报
浙江省宁波市2021年中考数学试卷(解析版).doc_第1页
第1页 / 共26页
浙江省宁波市2021年中考数学试卷(解析版).doc_第2页
第2页 / 共26页
浙江省宁波市2021年中考数学试卷(解析版).doc_第3页
第3页 / 共26页
浙江省宁波市2021年中考数学试卷(解析版).doc_第4页
第4页 / 共26页
浙江省宁波市2021年中考数学试卷(解析版).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、浙江省宁波市2021中考数学试卷试题卷一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在3,1,0,2这四个数中,最小的数是()A. 3B. 1C. 0D. 2【答案】A【解析】【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是3故选A2. 计算的结果是( )A. B. C. D. 【答案】D【解析】【分析】根据单项式乘以单项式和同底数幂的运算法则解答即可【详解】解:原式故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键3. 2021年5月

2、15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米数320000000科学记数法表示为( )A. B. C. D. 【答案】B【解析】【分析】科学记数法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往左移动到的后面,所以【详解】解: 故选:【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响4. 如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A. B. C.

3、D. 【答案】C【解析】【分析】根据主视图是从物体的正面看到的图形解答即可【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:故选:C【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键5. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差(单位:环)如下表所示:甲乙丙丁98991.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意

4、义,找出方差最小的运动员即可【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,从甲,丙,丁中选取,甲的方差是1.6,丙的方差是3,丁的方差是0.8,S 2丁S 2甲S 2乙,发挥最稳定的运动员是丁,从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁故选:D【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6. 要使分式有意义,x的取值应满足( )A. B. C. D

5、. 【答案】B【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案【详解】解: 分式有意义, 故选:【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键7. 如图,在中,于点D,若E,F分别为,的中点,则的长为( )A. B. C. 1D. 【答案】C【解析】【分析】根据条件可知ABD为等腰直角三角形,则BD=AD,ADC是30、60的直角三角形,可求出AC长,再根据中位线定理可知EF=。【详解】解:因为AD垂直BC,则ABD和ACD都是直角三角形,又因为所以AD=,因为sinC=,所以AC=2,因为EF为ABC的中位线,所以EF=1,故选:

6、C【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键8. 我国古代数学名著张邱建算经中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )A. B. C. D. 【答案】A【解析】【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解【详解】解:依题意,得:故选:A【点睛】本题考查了由实际问题抽象出二元

7、一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键9. 如图,正比例函数的图象与反比例函数的图象相交于A,B两点,点B的横坐标为2,当时,x的取值范围是( )A. 或B. 或C. 或D. 或【答案】C【解析】【分析】根据轴对称的性质得到点A的横坐标为-2,利用函数图象即可确定答案【详解】解:正比例函数与反比例函数都关于原点对称,点A与点B关于原点对称,点B的横坐标为2,点A的横坐标为-2,由图象可知,当或时,正比例函数的图象在反比例函数的图象的上方,当或时,故选:C【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键10. 如图

8、是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O当的面积相等时,下列结论一定成立的是( )A. B. C. D. 【答案】A【解析】【分析】根据AED和BCG是等腰直角三角形,四边形ABCD是平行四边形,四边形HEFG是矩形可得出AE=DE=BG=CG=a, HE=GF,GH=EF,点O是矩形HEFG的中心,设AE=DE=BG=CG=a, HE=GF= b ,GH=EF= c,过点O作OPEF于点P,OQGF于点Q,可得出OP,OQ分别是FHE和EGF的中位线,从而可表示OP,OQ

9、的长,再分别计算出,进行判断即可【详解】解:由题意得,AED和BCG是等腰直角三角形, 四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=ABC,BAD=DCBHDC=FBA,DCH=BAF,AEDCGB,CDHABFAE=DE=BG=CG四边形HEFG是矩形GH=EF,HE=GF设AE=DE=BG=CG=a, HE=GF= b ,GH=EF= c过点O作OPEF于点P,OQGF于点Q,OP/HE,OQ/EF点O是矩形HEFG的对角线交点,即HF和EG的中点,OP,OQ分别是FHE和EGF的中位线, ,即 而, 所以,故选项A符合题意, ,故选项B不符合题意,而于都不一定成立,故都不

10、符合题意,故选:A【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系试题卷二、填空题(每小题5分,共30分)11. 的绝对值是_【答案】5【解析】【分析】根据绝对值的定义计算即可【详解】解:|-5|=5,故答案为:5【点睛】本题考查了绝对值定义,掌握知识点是解题关键12. 分解因式:_【答案】x(x-3)【解析】【详解】直接提公因式x即可,即原式=x(x-3).13. 一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同从袋中任意摸出一个球是红球的概率为_【答案】【解析】【分析】用红球的个数除以球的总个数即可【详解】解:从袋中任意摸

11、出一个球有8种等可能结果,其中摸出的小球是红球的有3种结果,所以从袋中任意摸出一个球是红球概率为,故答案为:【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数14. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一如示意图,分别与相切于点C,D,延长交于点P若,的半径为,则图中的长为_(结果保留)【答案】【解析】【分析】连接OC、OD,利用切线的性质得到,根据四边形的内角和求得,再利用弧长公式求得答案【详解】连接OC、OD,分别与相切于点C,D, ,的长=(cm),故答案为:【点睛】此题考查圆的切线的性质定理,四边形的内角

12、和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键15. 在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_【答案】或【解析】【分析】根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:当点B在边DE上时;当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可【详解】解:根据题意,点称为点的“倒数点”,点B不可能在坐标轴上;点A在函数的图像上,设点A为,则点B为,点C为,当点B在边DE上时;点A与点B都在边DE上,点A与点B的

13、纵坐标相同,即,解得:,经检验,是原分式方程的解;点B为,的面积为:;当点B在边CD上时;点B与点C的横坐标相同,解得:,经检验,是原分式方程的解;点B为,的面积为:;故答案为:或【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析16. 如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,则的长为_,的值为_【答案】 . 2 . 【解析】【分析】由与关于直线对称,矩形证明再证明 可得 再求解 即可得的长; 先证明 可得: 设 则 再列方程,求解

14、 即可得到答案【详解】解: 与关于直线对称,矩形 矩形 为的中点, 如图, 四边形都是矩形, 设 则 解得: 经检验:是原方程的根,但不合题意,舍去, 故答案为:【点睛】本题考查是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,分式方程的解法,掌握以上知识是解题的关键三、解答题(本大题有8小题,共80分)17. (1)计算: (2)解不等式组:【答案】(1);(2)【解析】【分析】()根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可;()先解出,得到,再解出,得到,由大小小大中间取得到解集【详解】解:(1)原式(2)解不等式,得,解不等式,得,

15、所以原不等式组的解是【点睛】本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变18. 如图是由边长为1的小正方形构成的的网格,点A,B均在格点上(1)在图1中画出以为边且周长为无理数的,且点C和点D均在格点上(画出一个即可)(2)在图2中画出以为对角线的正方形,且点E和点F均在格点上【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,只要使得AB的邻边AD的长是无理数即可;(2)如图,取格点E、F,连接EF,则EF与AB互相垂直平分且相等,根据正方形的判定方法,则四边形为所作【详解】.

16、解:(1)如图四边形即为所作,答案不唯一(2)如图,四边形即为所求作正方形【点睛】本题考查了在网格中作特殊四边形,熟练掌握平行四边形和正方形的判定方法是准确作图的关键19. 如图,二次函数(a为常数)的图象的对称轴为直线(1)求a的值(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式【答案】(1);(2)【解析】【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;(2)由(1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则 从而可得平移方式及平移后的解析式【详解】解:(1)图象的对称轴为直线,(2),二次函数的表达式为,抛物线向

17、下平移3个单位后经过原点,平移后图象所对应的二次函数的表达式为【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数图像的平移,熟练掌握二次函数的基础知识是解题的关键20. 图1表示的是某书店今年15月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况若该书店15月的营业总额一共是182万元,观察图1、图2,解答下列向题:(1)求该书店4月份的营业总额,并补全条形统计图(2)求5月份“党史”类书籍的营业额(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由【答案】(1)45万元,见解析;(2)10.5万元;

18、(3)5月份党史类书籍的营业额最高,见解析【解析】【分析】(1)用该书店15月的营业总额减去其它4个月的营业总额即可求出该书店4月份的营业总额,进而可补全统计图;(2)用5月份的营业总额乘以折线统计图中其所占百分比即可;(3)结合两个统计图可以发现:在5个月中4、5月份的营业总额最高,且13月份的营业总额以及“党史”类书籍的营业额占当月营业总额的百分比都低于4、5月份,故只需比较4、5月份“党史”类书籍的营业额即可【详解】解:(1)(万元),答:该书店4月份的营业总额为45万元补全条形统计图:(2)(万元)答:5月份“党史”类书籍的营业额为10.5万元(3)4月份“党史”类书籍的营业额为:(万

19、元),且13月份的营业总额以及“党史”类书籍的营业额占当月营业总额的百分比都低于4、5月份,5月份“党史”类书籍的营业额最高【点睛】本题考查了条形统计图和折线统计图,属于常考题型,读懂图象信息、熟练应用所学知识是解题的关键21. 我国纸伞的制作工艺十分巧妙如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D能沿着伞柄滑动如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点的位置,且A,B,三点共线,B为中点,当时,伞完全张开(1)求的长(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离(参考数据:)【答案】(1)20cm;(2)26.4cm【解

20、析】【分析】(1)根据中点的性质即可求得;(2)过点B作于点E根据等腰三角形的三线合一的性质求出利用角平分线的性质求出BAE的度数,再利用三角函数求出AE,即可得到答案【详解】解:(1)B为中点,(2)如图,过点B作于点E,平分,在中,伞圈D沿着伞柄向下滑动的距离为【点睛】此题考查的是解直角三角形的实际应用,等腰三角形的三线合一的性质,线段中点的性质,角平分线的性质,正确构建直角三角形解决问题是解题的关键22. 某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)nnA,B,C三种方案每月所需的

21、费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示(1)请直接写出m,n的值(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?【答案】(1);(2);(3)当每月使用的流量超过3772兆时,选择C方案最划算【解析】【分析】(1)m的值可以从图象上直接读取,n的值可以根据方案A和方案B的费用差和流量差相除求得;(2)直接运用待定系数法求解即可;(3)计算出方案C图象与方案B的图象的交点表示的数值即可求解【详解】解:(1)(2)设函数表达式为,把,代入,

22、得,解得,y关于x的函数表达式(注:x的取值范围对考生不作要求)(3)(兆)由图象得,当每月使用的流量超过3772兆时,选择C方案最划算【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答23. 【证明体验】(1)如图1,为的角平分线,点E在上,求证:平分【思考探究】(2)如图2,在(1)的条件下,F为上一点,连结交于点G若,求的长【拓展延伸】(3)如图3,在四边形中,对角线平分,点E在上,若,求的长【答案】(1)见解析;(2);(3)【解析】【分析】(1)根据SAS证明,进而即可得到结论;(2)先证明,得,进而即可求解;(3)在上取一点F,

23、使得,连结,可得,从而得,可得,最后证明,即可求解【详解】解:(1)平分,即平分;(2),;(3)如图,在上取一点F,使得,连结平分,又,【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键24. 如图1,四边形内接于,为直径,上存在点E,满足,连结并延长交的延长线于点F,与交于点G(1)若,请用含的代数式表列(2)如图2,连结求证;(3)如图3,在(2)的条件下,连结,若,求的周长求的最小值【答案】(1);(2)见解析;(3);【解析】【分析】(1)利用圆周角定理求得,再根据,求得,即可得到答案;(2)由,得到,从而推出,证

24、得,由此得到结论;(3)连结利用已知求出,证得,得到,利用中,根据正弦求出,求出EF的长,再利用中,求出EG及DE,再利用勾股定理求出DF即可得到答案;过点C作于H,证明,得到,证明,得到,设,得到,利用勾股定理得到 ,求得,利用函数的最值解答即可【详解】解:(1)为的直径,(2)为的直径,又,(3)如图,连结为的直径,在中,即,在中,在中,在中,的周长为如图,过点C作于H,设,在中, ,当时,的最小值为3,的最小值为【点睛】此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服