1、2013年江苏省常州市中招考试数学试卷一选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1在下列实数中,无理数是( )A2 B3.14 C D2如图所示圆柱的左视图是( )A B C D3下列函数中,图象经过点(1,1)的反比例函数关系式是( )A B C D4下列计算中,正确的是( ) A(a3b)2=a6b2 Baa4=a4 Ca6a2=a3 D3a+2b=5ab5已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是( )A甲组数据比乙组数据的波动大 B乙组数据的比甲组数据的波动大C甲组数据与乙组数据的波动一样大
2、D甲组数据与乙组数据的波动不能比较6已知O的半径是6,点O到直线l的距离为5,则直线l与O的位置关系是( ) A相离 B相切 C相交 D无法判断7二次函数(a、b、c为常数且a0)中的x与y的部分对应值如下表:x321012345y12503430512给出了结论:(1)二次函数有最小值,最小值为3;(2)当时,y0;(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧则其中正确结论的个数是( ) A3 B2 C1 D08有3张边长为a的正方形纸片,4张边长分别为a、b(ba)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(
3、按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( ) Aa+b B2a+b C3a+b Da+2b二填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分,)9(4分)计算_,_,_,_10已知点P(3,2),则点P关于y轴的对称点P1的坐标是_,点P关于原点O的对称点P2的坐标是_11已知一次函数y=kx+b(k、b为常数且k0)的图象经过点A(0,2)和点B(1,0),则k=_,b=_12已知扇形的半径为6cm,圆心角为150,则此扇形的弧长是_cm,扇形的面积是_cm2(结果保留)13函数中自变量x的取值范围是_;若分式的值为0,则x=_14我市某一周的
4、每一天的最高气温统计如下表:最高气温()25262728天数1123则这组数据的中位数是_,众数是_15已知x=1是关于x的方程的一个根,则a=_16如图,ABC内接于O,BAC=120,AB=AC,BD为O的直径,AD=6,则DC=_17在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OAOB,OB=OA,则k=_三、解答题(本大题共2小题,共18分)18( 8分)化简(1)(4分) (2)(4分) 19(10分)解方程组和分式方程:(1)解方程组(5分) (2)(5分)解分式方程四、解答题(本大题共2小题,共15分
5、请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20( 7分)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2)(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为_21(8分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图五解答题(
6、本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22(6分)如图,C是AB的中点,AD=BE,CD=CE求证:A=B 23(7分)如图,在ABC中,AB=AC,B=60,FAC、ECA是ABC的两个外角,AD平分FAC,CD平分ECA求证:四边形ABCD是菱形六解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24(6分)在RtABC中,C=90,AC=1,BC=,点O为RtABC内一点,连接A0、BO、CO,且AOC=COB=BOA=120,按下列要求画图(保留画图痕迹):以点B为旋转中心,将AOB绕点B顺时针方向旋转60,得到AOB(得到A、O的对应点分别
7、为点A、O),并回答下列问题:ABC=_,ABC=_,OA+OB+OC=_25(7分)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克)(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?七解答题(本大题共3小
8、题,共25分,解答应写出文字说明,证明过程或演算步骤)26(6分)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称“皮克公式”)小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形181多边形
9、273一般格点多边形abS则S与a、b之间的关系为S=_(用含a、b的代数式表示)27(9分)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的O上,连接OC,过O点作ODOC,OD与O相交于点D(其中点C、O、D按逆时针方向排列),连接AB(1)当OCAB时,BOC的度数为_;(2)连接AC,BC,当点C在O上运动到什么位置时,ABC的面积最大?并求出ABC的面积的最大值(3)连接AD,当OCAD时,求出点C的坐标;直线BC是否为O的切线?请作出判断,并说明理由 28(10分)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点
10、B的坐标为(a,0),(其中a0),直线l过动点M(0,m)(0m2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA(1)写出A、C两点的坐标;(2)当0m1时,若PAQ是以P为顶点的倍边三角形(注:若HNK满足HN=2HK,则称HNK为以H为顶点的倍边三角形),求出m的值;(3)当1m2时,是否存在实数m,使CDAQ=PQDE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由江苏省常州市2013年中考数学试卷一选择题(本大题共有8小题,每小题2分,共16分)1(2分)(2013常州)在下列实数中,无
11、理数是()A2B3.14CD考点:无理数分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C、是有理数,故本选项错误;D、是无理数,故本选项正确故选D点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数2(2分)(2013常州)如图所示圆柱的左视图是()ABCD考点:简单几何体的三视图 8684分析:找到从左面看所得到的图形即可解答:解:此圆柱的左视图是一个矩形,故选C点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视
12、图3(2分)(2013常州)下列函数中,图象经过点(1,1)的反比例函数关系式是()ABCD考点:反比例函数图象上点的坐标特征分析:设将点(1,1)代入所设的反比例函数关系式y=(k0)即可求得k的值解答:解:设经过点(1,1)的反比例函数关系式是y=(k0),则1=,解得,k=1,所以,所求的函数关系式是y=或故选A点评:本题主要考查反比例函数图象上点的坐标特征所有反比例函数图象上点的坐标都满足该函数解析式4(2分)(2013常州)下列计算中,正确的是()A(a3b)2=a6b2Baa4=a4Ca6a2=a3D3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的
13、乘方分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解解答:解:A、(a3b)2=a6b2,故本选项正确;B、aa4=a5,故本选项错误;C、a6a2=a62=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误故选A点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键5(2分)(2013常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A甲组数据比乙组数据的波动大B乙组数据的比甲组数据的波
14、动大C甲组数据与乙组数据的波动一样大D甲组数据与乙组数据的波动不能比较考点:方差3718684分析:方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可解答:解:由题意得,方差,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B点评:本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波动性的大小,方差越大,波动性越大6(
15、2分)(2013常州)已知O的半径是6,点O到直线l的距离为5,则直线l与O的位置关系是()A相离B相切C相交D无法判断考点:直线与圆的位置关系3718684分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解答:解:O的半径为6,圆心O到直线l的距离为5,65,即:dr,直线L与O的位置关系是相交故选;C点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键7(2分)(2013常州)二次函数y=ax2+bx+c(a、b、c为常数且a0)中的x与y的部分对应值如下表:x321012345y1250343
16、0512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为3;(2)当时,y0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧则其中正确结论的个数是()A3B2C1D0考点:二次函数的最值;抛物线与x轴的交点3718684分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为4;故(1)小题错误;根据表格数据,当1x3时,y0,所以,x2时,y0正确,故(2)小题正确;二次函数y=ax2
17、+bx+c的图象与x轴有两个交点,分别为(1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个故选B点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键8(2分)(2013常州)有3张边长为a的正方形纸片,4张边长分别为a、b(ba)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()Aa+bB2a+bC3a+bDa+2b考点:完全平方公式的几何背景3718684分析:根
18、据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(ba)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案解答:解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(ba)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,a2+4ab+4b2=(a+2b)2,拼成的正方形的边长最长可以为(a+2b),故选D点评:此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式二填空题(本大题共有9小题,第9小题
19、4分,其余8小题每小题4分,共20分,)9(4分)(2013常州)计算(3)=3,|3|=3,(3)1=,(3)2=9考点:有理数的乘方;相反数;绝对值;有理数的减法3718684分析:根据相反数的定义,绝对值的性质,负整数指数幂,有理数的乘方的意义分别进行计算即可得解解答:解:(3)=3,|3|=3,(3)1=,(3)2=9故答案为:3;3;9点评:本题考查了相反数的定义,绝对值的性质,负整数指数幂,以及有理数的乘方的意义,是基础题10(2分)(2013常州)已知点P(3,2),则点P关于y轴的对称点P1的坐标是(3,2),点P关于原点O的对称点P2的坐标是(3,2)考点:关于原点对称的点的
20、坐标;关于x轴、y轴对称的点的坐标3718684分析:根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答解答:解:点P(3,2)关于y轴的对称点P1的坐标是(3,2),点P关于原点O的对称点P2的坐标是(3,2)故答案为:(3,2);(3,2)点评:本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键11(2分)(2013常州)已知一次函数y=kx+b(k、b为常数且k0)的图象经过点A(0,2)和点B(1,0),则k=2,b=2考点:待定系数法求一次函数解析式3718684分析:把点A、B的坐标代入函数解
21、析式,利用待定系数法求一次函数解析式解答即可解答:解:一次函数y=kx+b(k、b为常数且k0)的图象经过点A(0,2)和点B(1,0),解得故答案为:2,2点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用12(2分)(2013常州)已知扇形的半径为6cm,圆心角为150,则此扇形的弧长是5cm,扇形的面积是15cm2(结果保留)考点:扇形面积的计算;弧长的计算3718684分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可解答:解:扇形的半径为6cm,圆心角为150,此扇形的弧长是:l=5(cm),根据扇形的面积公式,得S
22、扇=15(cm2)故答案为:5,15点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键13(2分)(2013常州)函数y=中自变量x的取值范围是x3;若分式的值为0,则x=考点:分式的值为零的条件;函数自变量的取值范围3718684分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解解答:解:根据题意得,x30,解得x3;2x3=0且x+10,解得x=且x1,所以,x=故答案为:x3;点评:本题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可14(2分)(2
23、013常州)我市某一周的每一天的最高气温统计如下表:最高气温()25262728天数1123则这组数据的中位数是27,众数是28考点:众数;中位数3718684分析:根据中位数、众数的定义,结合表格信息即可得出答案解答:解:将表格数据从大到小排列为:25,26,27,27,28,28,28,中位数为:27;众数为:28故答案为:27、28点评:本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错15(2分)(2013常州)已知x=1是关于x的方
24、程2x2+axa2=0的一个根,则a=2或1考点:一元二次方程的解3718684分析:方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a的方程,即可求得a的值解答:解:根据题意得:2aa2=0解得a=2或1点评:本题主要考查了方程的解得定义,是需要掌握的基本内容16(2分)(2013常州)如图,ABC内接于O,BAC=120,AB=AC,BD为O的直径,AD=6,则DC=2考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系分析:根据直径所对的圆周角是直角可得BAD=BCD=90,然后求出CAD=30,利用同弧所对的圆周角相等求出CBD=CA
25、D=30,根据圆内接四边形对角互补求出BDC=60再根据等弦所对的圆周角相等求出ADB=ADC,从而求出ADB=30,解直角三角形求出BD,再根据直角三角形30角所对的直角边等于斜边的一半解答即可解答:解:BD为O的直径,BAD=BCD=90,BAC=120,CAD=12090=30,CBD=CAD=30,又BAC=120,BDC=180BAC=180120=60,AB=AC,ADB=ADC,ADB=BDC=60=30,AD=6,在RtABD中,BD=ADcos60=6=4,在RtBCD中,DC=BD=4=2故答案为:2点评:本题考查了圆周角定理,直角三角形30角所对的直角边等于斜边的一半,以
26、及圆的相关性质,熟记各性质是解题的关键17(2分)(2013常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OAOB,OB=OA,则k=考点:反比例函数综合题3718684分析:过点A作AEx轴于点E,过点B作BFx轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出OBFAOE,利用对应边成比例可求出k的值解答:解:过点A作AEx轴于点E,过点B作BFx轴于点F,设点A的坐标为(a,),点B的坐标为(b,),AOE+BOF=90,OBF+BOF=90,AOE=OBF,又BFO=OEA=90,OBFAO
27、E,=,即=,则=b,a=,可得:2k=1,解得:k=故答案为:点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度三、解答题(本大题共2小题,共18分)18(8分)(2013常州)化简(1)(2)考点:分式的加减法;实数的运算;零指数幂;特殊角的三角函数值3718684专题:计算题分析:(1)分别进行二次根式的化简、零指数幂的运算,代入特殊角的三角函数值即可得出答案(2)先通分,然后再进行分子的加减运算,最后化简即可解答:解:(1)原式=21+2=2(2)原式=点评:本题考查了分式的加减运算、特殊角的
28、三角函数值及零指数幂的运算,属于基础题,掌握各部分的运算法则是关键19(10分)(2013常州)解方程组和分式方程:(1)(2)考点:解分式方程;解二元一次方程组3718684分析:(1)利用代入消元法解方程组;(2)最简公分母为2(x2),去分母,转化为整式方程求解,结果要检验解答:解:(1),由得x=2y 把代入,得3(2y)+4y=6,解得y=3,把y=3代入,得x=6,所以,原方程组的解为;(2)去分母,得14=5(x2),解得x=4.8,检验:当x=4.8时,2(x2)0,所以,原方程的解为x=4.8点评:本题考查了解分式方程,解二元一次方程组(1)解分式方程的基本思想是“转化思想”
29、,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20(7分)(2013常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2)(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72考点:条形统计图;扇形统计图3718684分析:(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球
30、的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;(2)用360乘以足球所占的百分百,即可得出扇形的圆心角的度数解答:解:(1)总人数是:2040%=50(人),则打乒乓球的人数是:50201015=5(人)足球的人数所占的比例是:100%=20%,打乒乓球的人数所占的比例是:100%=10%;其它的人数所占的比例是:100%=30%补图如下:(2)根据题意得:360=72,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72;故答案为:72点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清
31、楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21(8分)(2013常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图考点:列表法与树状图法3718684专题:图表型分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解解答:解:(1)共有3个球,2个白球,随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的
32、球都是白球的情况有2种,所以,P(两次摸出的球都是白球)=点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比五解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22(6分)(2013常州)如图,C是AB的中点,AD=BE,CD=CE求证:A=B考点:全等三角形的判定与性质3718684专题:证明题分析:根据中点定义求出AC=BC,然后利用“SSS”证明ACD和BCE全等,再根据全等三角形对应角相等证明即可解答:证明:C是AB的中点,AC=BC,在ACD和BCE中,ACDBCE(SSS),A=B点评:本题考查了全等三角形的判定与性质,比
33、较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质23(7分)(2013常州)如图,在ABC中,AB=AC,B=60,FAC、ECA是ABC的两个外角,AD平分FAC,CD平分ECA求证:四边形ABCD是菱形考点:菱形的判定3718684专题:证明题分析:根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出解答:证明:B=60,AB=AC,ABC为等边三角形,AB=BC,ACB=60,FAC=ACE=120,BAD=BCD=120,B=D=60,四边形ABCD是平行四边形,AB=BC,平行四边形ABCD是菱形点评:此题主要考查了平行四边形的判定
34、以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键六解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24(6分)(2013常州)在RtABC中,C=90,AC=1,BC=,点O为RtABC内一点,连接A0、BO、CO,且AOC=COB=BOA=120,按下列要求画图(保留画图痕迹):以点B为旋转中心,将AOB绕点B顺时针方向旋转60,得到AOB(得到A、O的对应点分别为点A、O),并回答下列问题:ABC=30,ABC=90,OA+OB+OC=考点:作图-旋转变换专题:作图题分析:解直角三角形求出ABC=30,然后过点B作BC的垂线,在截
35、取AB=AB,再以点A为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O,连接AO、BO,即可得到AOB;根据旋转角与ABC的度数,相加即可得到ABC;根据直角三角形30角所对的直角边等于斜边的一半求出AB=2AC,即AB的长,再根据旋转的性质求出BOO是等边三角形,根据等边三角形的三条边都相等可得BO=OO,等边三角形三个角都是60求出BOO=BOO=60,然后求出C、O、A、O四点共线,再利用勾股定理列式求出AC,从而得到OA+OB+OC=AC解答:解:C=90,AC=1,BC=,tanABC=,ABC=30,AOB绕点B顺时针方向旋转60,AOB如图所示;ABC=A
36、BC+60=30+60=90,C=90,AC=1,ABC=30,AB=2AC=2,AOB绕点B顺时针方向旋转60,得到AOB,AB=AB=2,BO=BO,AO=AO,BOO是等边三角形,BO=OO,BOO=BOO=60,AOC=COB=BOA=120,COB+BOO=BOA+BOO=120+60=180,C、O、A、O四点共线,在RtABC中,AC=,OA+OB+OC=AO+OO+OC=AC=故答案为:30;90;点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A、O四点共线是
37、解题的关键25(7分)(2013常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克)(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?考点:一次函数的应用;一元一次不等式组的应用3718684分析:(1)
38、表示出生产乙种饮料(650x)千克,然后根据所需A种果汁和B种果汁的数量列出一元一次不等式组,求解即可得到x的取值范围;(2)根据销售总金额等于两种饮料的销售额的和列式整理,再根据一次函数的增减性求出最大销售额解答:解:(1)设该厂生产甲种饮料x千克,则生产乙种饮料(650x)千克,根据题意得,由得,x425,由得,x200,所以,x的取值范围是200x425;(2)设这批饮料销售总金额为y元,根据题意得,y=3x+4(650x)=3x+26004x=x+2600,即y=x+2600,k=10,当x=200时,这批饮料销售总金额最大,为200+2600=2400元点评:本题考查了一次函数的应用
39、,列一元一次不等式组解实际问题,根据A、B果汁的数量列出不等式组是解题的关键,(2)主要利用了一次函数的增减性七解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)26(6分)(2013常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b1(史称“皮克公式”)小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形181多边形273一般格点多边形abS则S与a、b之间的关系为S=a+2(b1)(用含a、b的代数式表示)考点:规律型:图形的变化类3718684分析:根据8=8+2(11),11=7+2(31)得到S=a+2(b1)解答:解:填表如下:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1818多边形27311一般格点多边形abS则S与a、b之间的