收藏 分销(赏)

上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc

上传人:人****来 文档编号:4979317 上传时间:2024-10-21 格式:DOC 页数:37 大小:1.67MB
下载 相关 举报
上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc_第1页
第1页 / 共37页
上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc_第2页
第2页 / 共37页
上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc_第3页
第3页 / 共37页
上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc_第4页
第4页 / 共37页
上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案.doc_第5页
第5页 / 共37页
点击查看更多>>
资源描述

1、上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案一、压轴题1(1)探索发现:如图1,已知RtABC中,ACB90,ACBC,直线l过点C,过点A作ADl,过点B作BEl,垂足分别为D、E求证:ADCE,CDBE(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标(3)拓展应用:如图3,在平面直角坐标系内,已知直线y3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45后,所得的直线交x轴于点R求点R的坐标解析:(1)见解析(2)(4,

2、2)(3)(6,0)【解析】【分析】(1)先判断出ACB=ADC,再判断出CAD=BCE,进而判断出ACDCBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:ACB90,ADlACBADCACEADC+CAD,ACEACB+BCECADBCE,ADCCEB90,ACBCACDCBE,ADCE,CDBE,(2)解:如图2,过点M作

3、MFy轴,垂足为F,过点N作NGMF,交FM的延长线于G,由已知得OMON,且OMN90由(1)得MFNG,OFMG,M(1,3)MF1,OF3MG3,NG1FGMF+MG1+34,OFNG312,点N的坐标为(4,2),(3)如图3,过点Q作QSPQ,交PR于S,过点S作SHx轴于H,对于直线y3x+3,由x0得y3P(0,3),OP3由y0得x1,Q(1,0),OQ1,QPR45PSQ45QPSPQSQ由(1)得SHOQ,QHOPOHOQ+QHOQ+OP3+14,SHOQ1S(4,1),设直线PR为ykx+b,则 ,解得 直线PR为yx+3由y0得,x6R(6,0)【点睛】本题是一次函数综

4、合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.2如图,在中,过点做射线,且,点从点出发,沿射线方向均匀运动,速度为;同时,点从点出发,沿向点匀速运动,速度为,当点停止运动时,点也停止运动连接,设运动时间为解答下列问题:(1)用含有的代数式表示和的长度;(2)当时,请说明;(3)设的面积为,求与之间的关系式解析:(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t【解析】【分析】(1)直接根据距离=速度时间即可;(2)通过证明,得到PQC=BCQ,即可求证;(3)过点C作CMAB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解【

5、详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6CP=BQCDABPCQ=BQC又CQ=QCPQC=BCQPQBC(3)过点C作CMAB,垂足为MAC=BC,CMABAM=(cm)AC=BC,ACB=A=B=CMABAMC=ACM=A=ACMCM=AM=4(cm)因此,S与t之间的关系式为S=16-2t【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键3如图,在中,为的中点,动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是(1)在运动过程中,当点位

6、于线段的垂直平分线上时,求出的值;(2)在运动过程中,当时,求出的值;(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由解析:(1)时,点位于线段的垂直平分线上;(2);(3)不存在,理由见解析【解析】【分析】(1)根据题意求出BP,CQ,结合图形用含t的代数式表示CP的长度,根据线段垂直平分线的性质得到CPCQ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可【详解】解:(1)由题意得,则,当点位于线段的垂直平分线上时,解得,则当时,点位于线段的垂直平分线上;(2)为的中点,解得,则当时,;(3)不存在,则 解得,不存

7、在某一时刻,使【点睛】本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键4已知:MNPQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB(1)如图1,求证:C=MAC+PBC;(2)如图2,AD,BD,AE,BE分别为MAC,PBC,CAN,CBQ的角平分线,求证:D+E=180;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,FDA=2FDB,FD的延长线交EA的延长线于点H,若3C=4E,猜想H与GDB的倍数关系并证明解析:(1)见解析;(2)见解析;(3)猜想

8、:H= 3GDB,证明见解析【解析】【分析】(1)作辅助线:过C作EFMN,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等MAC=ACF,BCF=PBC,再进行角的加和即可得出结论;(2)根据角平分线线定理得知,利用平角为180得到DAE=90,同理得,再根据四边形内角和180,得出结论;(3)由(1)(2)中的结论进行等量代换得到3ADB=2E,并且两角的和为180,由此得到两个角的度数分别为72和108,利用角的和与差得到HDA=36,H=54,由此得到倍数关系【详解】(1)如图:过C作EFMN,MNPQ,MNEFPQ,MAC=ACF,BCF=PBC,ACF+BCF=

9、MAC+PBC,即ACB=MAC+PBC (2)AD,AE分别为MAC,CAN的角平分线,于是DAE=90同理可得:,由(1)可得: (3)猜想:H= 3GDB. 理由如下:由(1)可知:,3C=4E,6ADB=4E,3ADB=2E,ADB+E=180,ADB=72,E=108,DGDA,GDB=18,FDA=2FDB,ADF=144,HDA=36,DAAE,H=54,H=3GDB【点睛】考查平行线中角度的关系,学生要熟悉掌握平行线的性质以及角平分线定理,结合角的和与差进行计算,本题的关键是平行线的性质5在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题材料一:在解决某些分式问

10、题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的例:已知:,求代数式x2+的值解:,4即4x+4x2+(x+)2216214材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题例:若2x3y4z,且xyz0,求的值解:令2x3y4zk(k0)则根据材料回答问题:(1)已知,求x+的值(2)已知,(abc0),求的值(3)若,x0,y0,z0,且abc7,求xyz的值解析:(1)5;(2);(3)【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照

11、材料二,设k(k0),则a5k,b2k,c3k,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设(k0),化简得:,相加变形可得x、y、z的代入中,可得k的值,从而得结论;解法二:取倒数得:,拆项得,从而得x,z,代入已知可得结论【详解】解:(1),4,x1+4,x+5;(2)设k(k0),则a5k,b2k,c3k,;(3)解法一:设(k0),+得:2()3k,k,得:k,得:,得:k,x,y,z代入中,得:,k4,x,y,z,xyz;解法二:,将其代入中得: ,y,x,z,xyz【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质

12、,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.6如图1,我们定义:在四边形ABCD中,若AD=BC,且ADB+BCA=180,则把四边形ABCD叫做互补等对边四边形(1)如图2,在等腰中,AE=BE,四边形ABCD是互补等对边四边形,求证:ABD=BAC=AEB(2)如图3,在非等腰中,若四边形ABCD仍是互补等对边四边形,试问ABD=BAC=AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由解析:(1)见解析;(2)仍然成立,见解析【解析】【分析】(1)根据等腰三角形的性质和互补等对边四边形的定义可利用

13、SAS证明ABDBAC,可得ADB=BCA,从而可推出ADB=BCA=90,然后在ABE中,根据三角形的内角和定理和直角三角形的性质可得ABD=AEB,进一步可得结论;(2)如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,根据互补等对边四边形的定义可利用AAS证明AGDBFC,可得AG=BF,进一步即可根据HL证明RtABGRtBAF,可得ABD=BAC,由互补等对边四边形的定义、平角的定义和四边形的内角和可得AEB+DHC=180,进而可得AEB=BHC,再根据三角形的外角性质即可推出结论【详解】(1)证明: AE=BE,EAB=EBA,四边形ABCD是互补等对边四边

14、形,AD=BC,在ABD和BAC中,AD=BC,DAB=CBA,AB=BA,ABDBAC(SAS),ADB=BCA,又ADB+BCA=180,ADB=BCA=90,在ABE中,EAB=EBA=(180AEB)=90AEB,ABD=90EAB=90(90AEB)=AEB,同理:BAC=AEB,ABD=BAC=AEB; (2)ABD=BAC=AEB仍然成立;理由如下:如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,四边形ABCD是互补等对边四边形,AD=BC,ADB+BCA=180,又ADB+ADG=180,BCA=ADG,又AGBD,BFAC,AGD=BFC=90,在AG

15、D和BFC中,AGD=BFC,ADG=BCA,AD=BCAGDBFC(AAS),AG=BF,在RtABG和RtBAF中,RtABGRtBAF(HL),ABD=BAC,ADB+BCA=180,EDB+ECA=180,AEB+DHC=180,DHC+BHC=180,AEB=BHCBHC=BAC+ABD,ABD=BAC,ABD=BAC=AEB【点睛】本题以新定义互补等对边四边形为载体,主要考查了全等三角形的判定与性质、等腰三角形的性质、三角形的内角和定理与三角形的外角性质以及四边形的内角和等知识,正确添加辅助线、熟练掌握上述知识是解题的关键7如图,在中,点为内一点,且(1)求证:;(2)若,为延长线

16、上的一点,且求的度数若点在上,且,请判断、的数量关系,并说明理由若点为直线上一点,且为等腰,直接写出的度数解析:(1)证明见解析;(2);,理由见解析; 7.5或15或82.5或150【解析】【分析】(1)利用线段的垂直平分线的性质即可证明;(2)利用SSS证得ADCBDC,可求得ACD=BCD=45,CAD=CBD=15,即可解题;连接MC,易证MCD为等边三角形,即可证明BDCEMC即可解题;分EN=EC、EN=CN、CE=CN三种情形讨论,画出图形,利用等腰三角形的性质即可求解【详解】(1)CB=CA,DB=DA, CD垂直平分线段AB,CDAB;(2)在ADC和BDC中,ADCBDC(

17、SSS),ACD=BCD=BCA=45,CAD=CBD=15,BDC=180-45-15=120;结论:ME=BD,理由:连接MC,CAB=CBA=45,CAD=CBD=15,DBA=DAB=30,BDE=30+30=60,由得BDC=120,CDE=60,DC=DM,CDE=60,MCD为等边三角形,CM=CD,EC=CA=CB,DMC=60,E=CAD=CBD=15,EMC=120,在BDC和EMC中,BDCEMC(AAS),ME=BD;当EN=EC时,=7.5或 =82.5;当EN=CN时, =150;当CE=CN时,点N与点A重合,CNE=15,所以CNE的度数为7.5或15或82.5

18、或150【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题8问题背景:(1)如图1,已知ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(2,0),点A的坐标为(6,3),请直接写出B点的坐标解析:(

19、1)证明见解析;(2)DEBDCE;(3)B(1,4)【解析】【分析】(1)证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD=CAE,证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据AECCFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答【详解】(1)证明:BD直线m,CE直线m,ADBCEA90BAC90BADCAE90BADABD90CAEABD 在ADB和CEA中ADBCEA(AAS)AEBD,ADCEDEAEADBDCE 即:DE

20、BDCE (2)解:数量关系:DEBDCE 理由如下:在ABD中,ABD=180-ADB-BAD,CAE=180-BAC-BAD,BDA=AEC,ABD=CAE,在ABD和CAE中, ABDCAE(AAS)AE=BD,AD=CE,DE=AD+AE=BD+CE;(3)解:如图,作AEx轴于E,BFx轴于F,由(1)可知,AECCFB,CF=AE=3,BF=CE=OE-OC=4,OF=CF-OC=1,点B的坐标为B(1,4)【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键9已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同

21、一直线上)连接 PB、PC,设PBAs,PCAt,BPCx,BACy(1)如图,当点 P 在ABC 内时,若 y70,s10,t20,则 x ;探究 s、t、x、y 之间的数量关系,并证明你得到的结论(2)当点 P 在ABC 外时,直接写出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形解析:(1)100;x=y+s+t;(2)见详解【解析】【分析】(1)利用三角形的内角和定理即可解决问题;结论:x=y+s+t利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题【详解】解:(1)BAC=70,ABC+ACB=110,PBA=10,PCA=20,PBC+PCB=80,BP

22、C=100,x=100,故答案为:100结论:x=y+s+t理由:A+ABC+ACB=A+PBA+PCA+PBC+PCB=180,PBC+PCB+BPC=180,A+PBA+PCA=BPC,x=y+s+t(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题10(1)问题发现:如图1,ACB和DCE均为等边三角形,点A、D、E在同一直线上,连接BE请直接

23、写出AEB的度数为_;试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2, ACB和DCE均为等腰三角形,ACBDCE90,点A、D、E在同直线上, CM为DCE中DE边上的高,连接BE,请判断AEB的度数线段CM、AE、BE之间的数量关系,并说明理由解析:(1)60;AD=BE.证明见解析;(2)AEB90;AE=2CM+BE;理由见解析.【解析】【分析】(1)由条件ACB和DCE均为等边三角形,易证ACDBCE,从而得到:AD=BE,ADC=BEC由点A,D,E在同一直线上可求出ADC,从而可以求出AEB的度数由ACDBCE,可得AD=BE;(2)首先根据ACB和DCE

24、均为等腰直角三角形,可得AC=BC,CD=CE,ACB=DCE=90,据此判断出ACD=BCE;然后根据全等三角形的判定方法,判断出ACDBCE,即可判断出BE=AD,BEC=ADC,进而判断出AEB的度数为90;根据DCE=90,CD=CE,CMDE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM【详解】(1)ACB=DCE,DCB=DCB,ACD=BCE,在ACD和BCE中,,ACDBCE,AD=BE,CEB=ADC=180CDE=120,AEB=CEBCED=60;AD=BE.证明:ACDBCE,AD=BE(2)AEB90;AE=2CM+BE;理由如下:

25、ACB和DCE均为等腰直角三角形,ACB =DCE= 90,AC = BC, CD = CE, ACB =DCB =DCEDCB, 即ACD = BCE,ACDBCE,AD = BE,BEC = ADC=135AEB =BECCED =135 45= 90在等腰直角DCE中,CM为斜边DE上的高,CM =DM= ME,DE = 2CMAE = DE+AD=2CM+BE【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题11如图,已知ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点如果点P在线段BC上以

26、3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm(2)若点Q的运动速度与点P的运动速度相等,经过1s后,BPD与CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次相遇?解析:(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇【解析】

27、【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度【详解】解:(1)BP=31=3,CQ=31=3(2)t=1s,点Q的运动速度与点P的运动速度相等BP=CQ=31=3cm, AB=10cm,点D为AB的中点,BD=5cm又PC=BCBP,BC=8cm,PC=83=5cm,PC=BD又AB=AC,B=C,在BPD和CQP中, BPDCQP(SAS)(3)点Q的运动速度与点P的运动速度不相等,BP与C

28、Q不是对应边,即BPCQ若BPDCPQ,且B=C,则BP=PC=4cm,CQ=BD=5cm, 点P,点Q运动的时间t=s, cm/s;(4)设经过x秒后点P与点Q第一次相遇 由题意,得x=3x+210, 解得经过s点P与点Q第一次相遇【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程12已知:中,过B点作BEAD,(1)如图1,点在的延长线上,连,作于,交于点求证:;(2)如图2,点在线段上,连,过作,且,连交于,连,问与有何数量关系,并加以证明;(3)如图3,点在CB延长线上,且,连接、的延长线交于点,若,请直接写出的值解析:(1)见详解,(2

29、),证明见详解,(3)【解析】【分析】(1)欲证明,只要证明即可;(2)结论:如图2中,作于只要证明,推出,由,推出即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,于,(AAS),(2)结论:理由:如图2中,作于,(3)如图3中,作于交AC延长线于,设,则,【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法13如图,若要判定纸带两条边线a,b是否互相平行,我们可以采用将纸条沿AB折叠的方式来进行

30、探究(1)如图1,展开后,测得,则可判定a/b,请写出判定的依据_;(2)如图2,若要使a/b,则与应该满足的关系是_;(3)如图3,纸带两条边线a,b互相平行,折叠后的边线b与a交于点C,若将纸带沿(,分别在边线a,b上)再次折叠,折叠后的边线b与a交于点,AB/,求出的长解析:(1)内错角相等,两直线平行;(2)1+22=180;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:3=4,若ab,则3=2,结合三角形内角和定理,即可得到答案;(3)分两种情况:当B1在B的左侧时,如图2,当B1在B的右侧时,如图3,分别求出的长,即可得到答案【详解】

31、(1),ab(内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:3=4,若ab,则3=2,4=2,2+4+1=180,1+22=180,要使ab,则与应该满足的关系是:1+22=180故答案是:1+22=180;(3)当B1在B的左侧时,如图2,AB/,ab,AA1=BB1=3,=AC- AA1=7-3=4;当B1在B的右侧时,如图3,AB/,ab,AA1=BB1=3,=AC+AA1=7+3=10综上所述:=4或10【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键14(阅读材科)

32、小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE(材料理解)(1)在图1中证明小明的发现(深入探究)(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60;EO=CO,其中正确的有(将所有正确的序号填在横线上)(延伸应用)(3)如图3,AB=BC,ABC=BDC=60,试探究A与C的数量关系解析:(1)证明见解析;

33、(2);(3)A+C=180【解析】【分析】(1)利用等式的性质得出BAD=CAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出BOC=60,再判断出BCFACO,得出AOC=120,进而得出AOE=60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDP是等边三角形,得出BD=BP,DBP=60,进而判断出ABDCBP(SAS),即可得出结论【详解】(1)证明:BAC=DAE,BAC+CAD=DAE+CAD,BAD=CAE,在ABD和ACE中, ,ABDACE;(2)如图2,ABC和ADE是等边三角形,A

34、B=AC,AD=AE,BAC=DAE=60,BAD=CAE,在ABD和ACE中, ,ABDACE,BD=CE,正确,ADB=AEC,记AD与CE的交点为G,AGE=DGO,180-ADB-DGO=180-AEC-AGE,DOE=DAE=60,BOC=60,正确,在OB上取一点F,使OF=OC,OCF是等边三角形,CF=OC,OFC=OCF=60=ACB,BCF=ACO,AB=AC,BCFACO(SAS),AOC=BFC=180-OFC=120,AOE=180-AOC=60,正确,连接AF,要使OC=OE,则有OC=CE,BD=CE,CF=OF=BD,OF=BF+OD,BFCF,OBCBCF,O

35、BC+BCF=OFC=60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)如图3, 延长DC至P,使DP=DB,BDC=60,BDP是等边三角形,BD=BP,DBP=60,BAC=60=DBP,ABD=CBP,AB=CB,ABDCBP(SAS),BCP=A,BCD+BCP=180,A+BCD=180【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键15如图,中,点为射线上一动点,连结,作且(1)如图1,过点作交于点,求证:;(2)如图2,连结交于点,若,求证:点为中点(3)当点在射线上

36、,连结与直线交于点,若,则_(直接写出结果)解析:(1)见解析;(2)见解析;(3)或【解析】【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可【详解】解:(1)证明:FDAC,FDA=90,DFA+DAF=90,同理,CAE+DAF=90,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD

37、=AC=BC,AD=CE,在FDG和BCG中,FDGBCG(AAS),DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FDAG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7,CG=DG=1.5,同理,当点E在线段BC上时,故答案为:或.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键二、选择题16我国古代易经一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集

38、到的野果数量,下列图示中表示91颗的是()ABCD解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案【详解】解:A、5+36+16659(颗),故本选项错误;B、1+36+26691(颗),故本选项正确;C、2+36+16656(颗),故本选项错误;D、1+26+366121(颗),故本选项错误;故选:B【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力17下列数或式:, ,0,在数轴上所对应

39、的点一定在原点右边的个数是( )A1B2C3D4解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】=-8,=,=-25 ,0,1在原点右边的数有 和 1故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.18有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()AabBab0C|a|b|Dab解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论【详解】解:由图可知a0b, ab0,即-ab0又|a|b|,ab故选:D【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键19根据等式的性质,下列变形正确的是()A若2a3b,则abB若ab,则a+1b1C若ab,则22D若,则2a3b解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案【详解】解:A、根据等式性质2,2a3b两边同时除以2得ab,原变形错误,故此选项不符合题意;B、根据等式性质1,等式两边都加上1,即可得到a+b+1,原变形错误,故此选项不符合题意;

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服