1、2016年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1|6|的相反数是()A6B6 C D2下列运算中,正确的是()Aa3(3a)2=6a5 B C(2a1)2=4a2+4a+1 D2a2+3a3=5a53一个正方体的每个面上都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是()A记B心C间D观4某商场试销售某品牌男款运动鞋,一个月内销售情况如下表:型号(cm)38394041424344数量(件)571215232514商场经理要想了解哪种型号需求量最大,则上述数据的统计量中,对商场经理来说最有意义的是()A平均数B方差C中位数D众数5如
2、果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A B C D6如图,在ABC中,C=90,分别以点A、B为圆心,大于AB长为半径作弧,两弧分别交于M、N两点,过M、N两点的直线交AC于点E,若AC=6,BC=3,则CE的长为()A B C D7在同一直角坐标系中,一次函数y=axa与反比例函数的图象可能是()A BC D8二次函数y=ax2+bx+c(a、b、c为常数,且a0)的x与y的部分对应值如下表:有下列结论:a0;4a2b+10;x=3是关于x的一元二次方程ax2+(b1)x+c=0的一个根;当3xn时,ax2+(b1)x+c0其中正确结
3、论的个数为()A4B3C2D1二、填空题(本大题共8小题,每小题3分,共24分)9分解因式:ax4ay4= 10上海中信大厦是中国第一、世界第二高的摩天大楼,它塔冠上的风力发电机每年可以产生1189000千瓦时的绿色电力,1189000这个数用科学记数法可表示为 11如图,直线AB经过原点O,与双曲线交于A、B两点,ACy轴于点C,且ABC的面积是8,则k的值是 12关于x的方程3kx2+12x+2=0有实数根,则k的取值范围是 13一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发
4、现有71次摸到红球请你估计这个口袋中红球的数量为 个14如图,在ABC中,点D为AC上一点,且,过点D作DEBC交AB于点E,连接CE,过点D作DFCE交AB于点F若AB=15,则EF= 15若关于x的方程的解为正数,则m的取值范围是 16小明将量角器在桌面上进行连续翻转,如图为第1次、第2次翻转,若量角器的半径为1,则第2016次翻转后圆心O所走过的路径长为 三、解答题(本大题共10小题,共80分)17(6分)先化简,再求值:,其中18(6分)如图,在平面直角坐标系中,OAB的顶点坐标分别为O(0,0),A(1,2),B(3,1)(每个方格的边长均为1个单位长度)(1)将OAB向右平移1个单
5、位后得到O1A1B1,请画出O1A1B1;(2)请以O为位似中心画出O1A1B1的位似图形,使它与O1A1B1的相似比为2:1;(3)点P(a,b)为OAB内一点,请直接写出位似变换后的对应点P的坐标为 19(7分)为了了解九年级学生参加体育活动的情况,某校对九年级部分学生进行问卷调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A、1.5小时以上 B、11.5小时 C、0.51小时 D、0.5小时以下(这里的11.5表示大于或等于1同时小于1.5,本题类似的记号均表示这一含义)根据调查结果绘制了两幅不完整的统计图:请你根据以上信息,解答下列问题:(1)本次调查采用的
6、调查方式是 ;共调查了学生 名;(2)请补全条形统计图和扇形统计图;(3)若该校有1500名九年级学生,估计该校九年级有多少名学生平均每天参加体育活动的时间至少1小时20(7分)九年一班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,小强拿出一个箱子说:“这个不透明的箱子里装有红、白球各1个和若干个黄球,它们除了颜色外其余都相同,谁能同时摸出两个黄球谁就获得一等奖”已知任意摸出一个球是黄球的概率为(1)请直接写出箱子里有黄球 个;(2)请用列表或树状图求获得一等奖的概率21(8分)如图,在ABCD中,BAD和DCB的平分线AE、CF分别交BC、AD于点E、F,点M、N分别为AE、C
7、F的中点,连接FM、EN,试判断FM和EN的数量关系和位置关系,并加以证明22(8分)“五一”期间,小亮与家人到某旅游风景区登山,他们沿着坡度为5:12的山坡AB向上走了1300米,到达缆车站B处,乘坐缆车到达山顶C处,已知点A、B、C、D在同一平面内,从山脚A处看山顶C处的仰角为30,缆车行驶路线BC与水平面的夹角为60,求山高CD(结果精确到1米,)(注:坡度是指坡面的铅直高度与水平宽度的比)23(8分)如图,已知ABC,ACB=90,ACBC,点D为AB的中点,过点D作BC的垂线,垂足为点F,过点A、C、D作O交BC于点E,连接CD、DE(1)求证:DF为O的切线;(2)若AC=3,BC
8、=9,求DE的长24(8分)某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少销售量y(件)与销售单价x(元)的关系如图所示(1)图中点P所表示的实际意义是 ;销售单价每提高1元时,销售量相应减少 件;(2)请直接写出y与x之间的函数表达式 ;自变量x的取值范围为 ;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?25(10分)阅读理解:问题:我们在研究“等腰三角形底边上的任意一点到两腰的距离和为定值”时,如图,在ABC中,AB=A
9、C,点P为底边BC上的任意一点,PDAB于点D,PEAC于点E,求证:PD+PF是定值,在这个问题中,我们是如何找到这一定值的呢?思路:我们可以将底边BC上的任意一点P移动到特殊的位置,如图,将点P移动到底边的端点B处,这样,点P、D都与点B重合,此时,PD=0,PE=BE,这样PD+PE=BE因此,在证明这一命题时,我们可以过点B作AC边上的高BF(如图),证明PD+PE=BF即可请利用上述探索定值问题的思路,解决下列问题:如图,在正方形ABCD中,一直角三角板的直角顶点E在对角线BD上运动,一条直角边始终经过点C,另一条直角边与射线DA相交于点F,过点F作FHBD,垂足为H(1)试猜想EH
10、与CD的数量关系,并加以证明;(2)当点E在DB的延长线上运动时,EH与CD之间存在怎样的数量关系?请在图中画出图形并直接写出结论;(3)如图所示,如果将正方形ABCD改为矩形ABCD,ADB=,其它条件不变,请直接写出EH与CD的数量关系26(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+(其中a、b为常数,a0)经过点A(1,0)和点B(3,0),且与y轴交于点C,点D为对称轴与直线BC的交点(1)求该抛物线的表达式;(2)抛物线上存在点P,使得DPBACB,求点P的坐标;(3)若点Q为点O关于直线BC的对称点,点M为直线BC上一点,点N为坐标平面内一点,是否存在这样的点M和点N,使得以Q、B、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由