收藏 分销(赏)

合肥七年级下册数学期末试卷测试卷(含答案解析).doc

上传人:快乐****生活 文档编号:4917895 上传时间:2024-10-20 格式:DOC 页数:35 大小:1.02MB
下载 相关 举报
合肥七年级下册数学期末试卷测试卷(含答案解析).doc_第1页
第1页 / 共35页
合肥七年级下册数学期末试卷测试卷(含答案解析).doc_第2页
第2页 / 共35页
合肥七年级下册数学期末试卷测试卷(含答案解析).doc_第3页
第3页 / 共35页
合肥七年级下册数学期末试卷测试卷(含答案解析).doc_第4页
第4页 / 共35页
合肥七年级下册数学期末试卷测试卷(含答案解析).doc_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、合肥七年级下册数学期末试卷测试卷(含答案解析)一、解答题1如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)2已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间

2、的数量关系3如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)4如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此

3、时AD与AC之间的位置关系5已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系二、解答题6(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角

4、相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t7如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系8已知直线,

5、M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数9已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P运动到线段AC上时,直接写出的度数;(2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说

6、明理由:若不成立,请写出与之间的关系,并加以证明10如图,两个形状,大小完全相同的含有30、60的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2/秒,在两个三角板旋转过程

7、中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定值,请选择你认为对的结论加以证明三、解答题11在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由12解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请

8、写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数13如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运

9、动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由14如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间15如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处

10、.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、解答题1(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1

11、)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+

12、MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,

13、角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线2(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中

14、,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE

15、+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质3(1)60;(2)n+40;(3)n+40

16、或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解解析:(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE

17、=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,B

18、EF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的度数为n+40或n-40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键4(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADC

19、AD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下

20、:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键5(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+解析:(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=13

21、0,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质二、解答题6(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】

22、(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式

23、计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3

24、t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB

25、平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论7(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考

26、核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键8(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作Q

27、FCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系9(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;解析:(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;(2)过点作,过点作,先根据(1)可得,再根据(1)同样的方

28、法可得,由此即可得出结论;(3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论【详解】解:(1)如图,过点作,又,且点运动到线段上,平分,平分,;(2)猜想,证明如下:如图,过点作,过点作,由(1)已得:,同理可得:,;(3),证明如下:如图,过点作,过点作,由(1)已得:,即,即,即,即【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键10(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符

29、合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含的

30、代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP90,CPA60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时ACPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点P

31、逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时,ACDP,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为1

32、8秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPMCPAAPN90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【点

33、睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键三、解答题11(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE

34、、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述

35、,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识12(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义

36、及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键13(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生

37、变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18

38、045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+ABQ90,ABF+EAB36090270,又AP、BP分别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC18

39、0,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题14(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服