资源描述
一、解答题
1.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.
(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;
(2)求四边形的面积;
(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.
2.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
3.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
4.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数.
5.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.
(1)求证:AB//CD;
(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;
(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.
6.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”.
(初步探究)
(1)直接写出计算结果:2③=___,()⑤=___;
(2)关于除方,下列说法错误的是___
A.任何非零数的圈2次方都等于1;
B.对于任何正整数n,1ⓝ=1;
C.3④=4③;
D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(-3)④=___; 5⑥=___;(-)⑩=___.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;
(3)算一算:÷(−)④×(−2)⑤−(−)⑥÷
8.探究与应用:
观察下列各式:
1+3= 2
1+3+5= 2
1+3+5+7= 2
1+3+5+7+9= 2
……
问题:(1)在横线上填上适当的数;
(2)写出一个能反映此计算一般规律的式子;
(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)
9.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:
(1)由,因为,请确定是______位数;
(2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________
(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=____;
10.观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”.
(1)数对中是“白马有理数对”的是_________;
(2)若是“白马有理数对”,求的值;
(3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由.
(4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)
11.[阅读材料]
∵,即,∴,∴的整数部分为1,∴的小数部分为
[解决问题]
(1)填空:的小数部分是__________;
(2)已知是的整数部分,是的小数部分,求代数式的平方根为______.
12.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”.
(1)分别判断数组和是否为“蹦蹦数组”;
(2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请说明理由;
(3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.
13.如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m﹣4|+=0.
(1)求点B、点D的坐标.
(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x轴向右平移,如图2.设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米.
①当t=1.5时,S= 平方厘米;
②在2≤t≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米;
③在小正方形平移过程中,若S=2,则小正方形平移的时间t为 秒.
(3)将大正方形固定不动,小正方形从图1中起始状态沿x轴向右平移,在平移过程中,连接AD,过D点作DM⊥AD交直线BC于M,∠DAx的角平分线所在直线和∠CMD的角平分线所在直线交于N(不考虑N点与A点重合的情形),求∠ANM的大小并说明理由.
14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.
(1)( ),( )
(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数: (注: 三角形三个内角的和为)
(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.
16.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义:
将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“.
例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.
根据以上定义,解决下列问题:
已知点P(3,2).
(1)若点A(a,2),且d(P,A)=5,求a的值;
(2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围;
(3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围.
17.如图1,在平面直角坐标系中,,且满足,过作轴于.
(1)求的面积.
(2)若过作交轴于,且分别平分,如图2,求的度数.
(3)在轴上存在点使得和的面积相等,请直接写出点坐标.
18.在平面直角坐标系中,为坐标原点.已知两点,且、满足;若四边形为平行四边形,且 ,点在轴上.
(1)如图①,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一;
(2)如图②,当从点出发,沿轴向上运动,连接、,、、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况).
19.学校将20××年入学的学生按入学年份、年级、班级、班内序号的顺序给每一位学生编号,如2015年入学的8年级3班的46号学生的编号为15080346.张山同学模仿二维码的方式给学生编号设计了一套身份识别系统,在5×5的正方形风格中,黑色正方形表示数字1,白色正方形表示数字0. 我们把从上往下数第i行、从左往右数第j列表示的数记为aij,(其中,i、j=1,2,3,4,5),规定Ai=16ai1+8ai2+4ai3+2ai4+ai5.
(1)若A1表示入学年份,A2表示所在年级,A3表示所在班级,A4表示编号的十位数字,A5表示编号的个位数字.
①图1是张山同学的身份识别图案,请直接写出张山同学的编号;
②请在图2中画出2018年入学的9年级5班的39号同学的身份识别图案;
(2)张山同学又设计了一套信息加密系统,其中A1表示入学年份加8,A2表示所在年级的数减6再加上所在班级的数,A3表示所在年级的数乘2后减3再减所在班级的数,将编号(班内序号)的末两位单列出来,作为一个两位数,个位与十位数字对换后再加2,所得结果的十位数字用A4表示、个位数字用A5表示.例如:2018年9年级5班的39号同学,其加密后的身份识别图案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份识别(26081095)图案如图3所示.图4是李思同学加密后的身份识别图案,请求出李思同学的编号.
20.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.
(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);
(2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值;
(3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.
21.某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元.
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.
22.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.
(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.
(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.
(3)若AM=BN,MN=BM,求m和n值.
23.在平面直角坐标系中,若点P(x,y)的坐标满足x﹣2y+3=0,则我们称点P为“健康点”:若点Q(x,y)的坐标满足x+y﹣6=0,则我们称点Q为“快乐点”.
(1)若点A既是“健康点”又是“快乐点”,则点A的坐标为 ;
(2)在(1)的条件下,若B是x轴上的“健康点”,C是y轴上的“快乐点”,求△ABC的面积;
(3)在(2)的条件下,若P为x轴上一点,且△BPC与△ABC面积相等,直接写出点P的坐标.
24.阅读感悟:
有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数、满足①,②,求和的值.
本题常规思路是将①②两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组,则_______,_______;
(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?
(3)对于实数、,定义新运算:,其中、、是常数,等式右边是通常的加法和乘法运算.已知,,那么_______.
25.阅读材料:
关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为,则全部整数解可表示为(t为整数).
因为解得.因为t为整数,所以t=0或-1.
所以该方程的正整数解为和 .
(1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;
(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;
(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.
26.某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:
方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);
方案二:4人乘同一辆出租车往返.
问选择哪种计费方式更省钱?(写出过程)
27.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止.
(Ⅰ)直接写出三个点的坐标;
(Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;
(Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围.
28.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,
已知,.
(1)求,的值;
(2)求.
(3)若关于的不等式组恰好有4个整数解,求的取值范围.
29.某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)
车型
甲
乙
丙
汽车运载量(公斤/辆)
600
800
900
汽车运费(元/辆)
500
600
700
(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?
(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?
30.已知A(0,a)、B(b,0),且+(b﹣4)2=0.
(1)直接写出点A、B的坐标;
(2)点C为x轴负半轴上一点满足S△ABC=15.
①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;
②如图2,若点F(m,10)满足S△ACF=10,求m.
(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析
【分析】
(1)利用平移变换的性质解决问题即可.
(2)利用分割法确定四边形的面积即可.
(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.
【详解】
解:(1)点,,
又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,
线段是由线段向左平移4个单位,再向下平移6个单位得到,
,.
(2).
(3)连接.
,,
的中点坐标为在轴上,
.
,
轴,
同法可证,
,
,
,
同法可证,,
,,
当点在点的下方时,
,,
,
,
当点在点的上方时,.
【点睛】
本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.
2.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=∠BAP,∠DCK=∠DCP,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
3.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
4.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°
【分析】
(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;
(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;
(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.
【详解】
解:(1)如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=α,∠CPE=β,
∴∠APC=∠APE+∠CPE=α+β.
(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,
∵AB∥CD,∠PAB=α,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,∠PCD=β,
∴α=∠APC+β,
∴∠APC=α-β;
如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,
∵AB∥CD,∠PCD=β,
∴∠2=∠PCD=β,
∵∠2=∠PAB+∠APC,∠PAB=α,
∴β=α+∠APC,
∴∠APC=β-α;
(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,
∵AB∥CD,
∴AB∥QF∥PE∥CD,
∴∠BAP=∠APE,∠PCD=∠EPC,
∵∠APC=116°,
∴∠BAP+∠PCD=116°,
∵AQ平分∠BAP,CQ平分∠PCD,
∴∠BAQ=∠BAP,∠DCQ=∠PCD,
∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,
∵AB∥QF∥CD,
∴∠BAQ=∠AQF,∠DCQ=∠CQF,
∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,
∴∠AQC=58°.
【点睛】
此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.
5.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°
【分析】
(1)首先证明∠1=∠3,易证得AB//CD;
(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;
(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;
【详解】
(1)如图1中,
∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∴AB//CD.
(2)结论:如图2中,∠PEQ+2∠PFQ=360°.
理由:作EH//AB.
∵AB//CD,EH//AB,
∴EH//CD,
∴∠1=∠2,∠3=∠4,
∴∠2+∠3=∠1+∠4,
∴∠PEQ=∠1+∠4,
同法可证:∠PFQ=∠BPF+∠FQD,
∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,
∴∠1+∠4+∠EQD+∠BPE=2×180°,
即∠PEQ+2(∠FQD+∠BPF)=360°,
∴∠PEQ+2∠PFQ=360°.
(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,
∵EQ//PH,
∴∠EQC=∠PHQ=x,
∴x+10y=180°,
∵AB//CD,
∴∠BPH=∠PHQ=x,
∵PF平分∠BPE,
∴∠EPQ+∠FPQ=∠FPH+∠BPH,
∴∠FPH=y+z﹣x,
∵PQ平分∠EPH,
∴Z=y+y+z﹣x,
∴x=2y,
∴12y=180°,
∴y=15°,
∴x=30°,
∴∠PHQ=30°.
【点睛】
本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.
6.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.
【分析】
初步探究:
(1)根据除方运算的定义即可得出答案;
(2)根据除方运算的定义逐一判断即可得出答案;
深入思考:
(1)根据除方运算的定义即可得出答案;
(2)根据(1)即可总结出(2)中的规律;
(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.
【详解】
解:初步探究:
(1)2③=2÷2÷2=
()⑤=
(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;
B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误;
C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确;
D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;
故答案选择:C.
深入思考:
(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=
5⑥=5÷5÷5÷5÷5÷5=
(-)⑩=
(2)aⓝ=a÷a÷a…÷a=
(3)原式=
=
=
=-5
【点睛】
本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.
8.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;
(3)﹣1.008016×106.
【分析】
(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.
(2) 根据规律写出即可.
(3) 先提取符号,再用规律解题.
【详解】
解:(1)1+3=22
1+3+5=32
1+3+5+7=42
1+3+5+7+9=52
……
故答案为:2、3、4、5;
(2)第n个等式为1+3+5+7+…+(2n+1)=
(3)原式=﹣(1+3+5+7+9+…+2019)
=﹣10102
=﹣1.0201×106.
【点睛】
本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.
9.(1)两;(2)2,3;(3)24,-48.
【分析】
(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;
(2)继续分析求出个位数和十位数即可;
(3)利用(1)(2)中材料中的过程进行分析可得结论.
【详解】
解:(1)由103=1000,1003=1000000,
∵1000<32768<100000,
∴10<<100,
∴是两位数;
故答案为:两;
(2)∵只有个位数是2的立方数是个位数是8,
∴的个位上的数是2
划去32768后面的三位数768得到32,
因为33=27,43=64,
∵27<32<64,
∴30<<40.
∴的十位上的数是3.
故答案为:2,3;
(3)由103=1000,1003=1000000,
1000<13824<1000000,
∴10<<100,
∴是两位数;
∵只有个位数是4的立方数是个位数是4,
∴的个位上的数是4
划去13824后面的三位数824得到13,
因为23=8,33=27,
∵8<13<27,
∴20<<30.
∴=24;
由103=1000,1003=1000000,
1000<110592<1000000,
∴10<<100,
∴是两位数;
∵只有个位数是8的立方数是个位数是2,
∴的个位上的数是8,
划去110592后面的三位数592得到110,
因为43=64,53=125,
∵64<110<125,
∴40<<50.
∴=-48;
故答案为:24,-48.
【点睛】
此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.
10.(1);(2)2;(3)不是;(4)(6,)
【分析】
(1)根据“白马有理数对”的定义,把数对分别代入计算即可判断;
(2)根据“白马有理数对”的定义,构建方程即可解决问题;
(3)根据“白马有理数对”的定义即可判断;
(4)根据“白马有理数对”的定义即可解决问题.
【详解】
(1)∵-2+1=-1,而-2×1-1=-3,
∴-2+1-3,
∴(-2,1)不是“白马有理数对”,
∵5+=,5×-1=,
∴5+=5×-1,
∴是“白马有理数对”,
故答案为:;
(2)若是“白马有理数对”,则
a+3=3a-1,
解得:a=2,
故答案为:2;
(3)若是“白马有理数对”,则m+n=mn-1,
那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,
∵-mn+1 mn-1
∴(-n,-m)不是“白马有理数对”,
故答案为:不是;
(4)取m=6,则6+x=6x-1,
∴x=,
∴(6,)是“白马有理数对”,
故答案为:(6,).
【点睛】
本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.
11.(1);(2)±3.
【分析】
(1)由于4<7<9,可求的整数部分,进一步得出的小数部分;
(2)先求出的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
解:(1)∵4<7<9,
∴,即,∴,∴的整数部分为2,
∴的小数部分为;
(2)∵是的整数部分,是的小数部分,9<10<16,
∴,即,
∴,
∴的整数部分为3, 的小数部分为,
即有,,
∴
9的平方根为±3.
∴的平方根为±3.
【点睛】
本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.
12.(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147.
【分析】
(1)由“蹦蹦数组”的定义进行验证即可;
(2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解;
(3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数.
【详解】
解:(1)数组(437,307,177)中,437-307=130,307-177=130,
∴437-307=307-177,故(437,307,177)是“蹦蹦数组”;
数组(601,473,346)中,601-473=128,473-346=127,
∴601-473473-346,故(601,473,346)不是“蹦蹦数组”;
(2)设s为,t为,则,
∵m、n为整数,
∴,则t为258,
∴s为532,
而,则b为532-137=395,
验算:532-395=395-258=137,
故数组为(532,395,258);
(3)根据题意,设这个数为,则,
∴,
而和都是0到9的正整数,
讨论:
p
1
2
3
4
5
q
1
3
5
7
9
111
123
135
147
159
而是7的倍数的三位数只有147,
且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,
故这个三位数是147.
【点睛】
本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.
13.(1);(2)①3,②4,③1或5;(3),理由见解析
【分析】
(1)由非负性的性质以及算数平方根的性质可得出的值,可答案可求出;
(2)①1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积;
②画出图形,计算所得图形面积即可;
③小正方形的高不变,根据面积即可求出小正方形平移的距离和时间;
(3)过作
展开阅读全文