资源描述
成都树德实验中学东区七年级下册数学期末压轴难题试题及答案解答
一、选择题
1.如图,与是同位角的是( )
A. B. C. D.
2.把“笑脸”进行平移,能得到的图形是( )
A. B. C. D.
3.在平面直角坐标系中,点P(5,﹣1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.下列命题正确的是( )
A.若a>b,b<c,则a>c B.若a∥b,b∥c,则a∥c
C.49的平方根是7 D.负数没有立方根
7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( )
A. B. C. D.
8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( )
A.(505,﹣504) B.(506,﹣505)
C.(505,﹣505) D.(﹣506,506)
二、填空题
9.已知实数x,y满足+(y+1)2=0,则x-y的立方根是_____.
10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.
11.如图,四边形ABCD中,AB∥CD,AD∥BC,且∠BAD、∠ADC的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为_______.
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
13.如图,有一条直的宽纸带,按图折叠,则的度数等于______.
14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个.
15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__.
16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是______.
三、解答题
17.计算:(1)
(2)
18.求下列各式中的x值
(1)x2﹣6
(2)(2x﹣1)3=﹣4
19.完成下面的证明.
如图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°.
证明:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°( ),
∴∠EFB=∠ADB(等量代换),
∴EFAD( ),
∴∠1=∠BAD( ),
又∵∠1=∠2(已知),
∴∠2=∠ (等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°( ).
20.如图,三角形在平面直角坐标系中.
(1)请写出三角形各点的坐标;
(2)求出三角形的面积;
(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.
21.已知a是的整数部分,b是的小数部分.
(1)求a,b的值;
(2)求的平方根.
二十二、解答题
22.求下图的方格中阴影部分正方形面积与边长.
二十三、解答题
23.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.
(1)如图1,求证:;
(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;
24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.
(1)如图①,若平分,求的度数;
(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
26.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解.
【详解】
解:观察图形可知,与∠1是同位角的是∠4.
故选:C.
【点睛】
本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
2.D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改
解析:D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.D
【分析】
根据点的横纵坐标的符号可得所在象限.
【详解】
解:∵点P的横坐标是正数,纵坐标是负数,
∴点P(5,-1)在第四象限,
故选:D.
【点睛】
本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.D
【分析】
结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.
【详解】
解:∵ABCD,
∴∠1=∠2,
∵AC平分∠BAD,
∴∠2=∠3,
∴∠1=∠3,
∵∠B=∠CDA,
∴∠1=∠4,
∴∠3=∠4,
∴BCAD,
∴①正确;
∴CA平分∠BCD,
∴②正确;
∵∠B=2∠CED,
∴∠CDA=2∠CED,
∵∠CDA=∠DCE+∠CED,
∴∠ECD=∠CED,
∴④正确;
∵BCAD,
∴∠BCE+∠AEC= 180°,
∴∠1+∠4+∠DCE+∠CED= 180°,
∴∠1+∠DCE = 90°,
∴∠ACE= 90°,
∴AC⊥EC,
∴③正确
故其中正确的有①②③④,4个,
故选:D.
【点睛】
此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.
6.B
【解析】
【分析】
根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.
【详解】
选项A,由a>b,b>c,则a>c,可得选项A错误;
选项B, 若a∥b,b∥c,则a∥c,正确;
选项C,由49的平方根是±7,可得选项C错误;
选项D,由负数有立方根,可得选项D错误;
故选B.
【点睛】
本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.
7.B
【分析】
根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解.
【详解】
解:∵在矩形纸片中,,,
,
,
∵折叠,
∴,
.
故选:B.
【点睛】
本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要.
8.B
【分析】
求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第
解析:B
【分析】
求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论;
【详解】
由题可知,
第一象限的点:,…角标除以4余数为2;
第二象限的点:,,…角标除以4余数为3;
第三象限的点:,,…角标除以4余数为0;
第四象限的点:,,…角标除以4余数为1;
由上规律可知:,
∴点在第四象限,
又∵,,
即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商,
∴.
故选:B.
【点睛】
本题主要考查了点的坐标规律,准确理解是解题的关键.
二、填空题
9.【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是
解析:
【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
10.-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=
解析:-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=﹣3,
故答案为:﹣3.
【点睛】
本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.
11.8
【分析】
根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是
解析:8
【分析】
根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.
【详解】
解:∵AD∥BC,
∴∠ADF=∠DFC,
∵DF平分∠ADC,
∴∠ADF=∠CDF,
∴∠DFC=∠CDF,
∴CF=CD,
同理BE=AB,
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴AB=BE=CF=CD=5,
∴BC=BE+CF﹣EF=5+5﹣2=8,
∴AD=BC=8,
故答案为:8.
【点睛】
本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
13.75°
【分析】
由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.
【详解】
解:∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为
解析:75°
【分析】
由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.
【详解】
解:∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为折痕,
∴2∠α+∠CBF=180°,
即2∠α+30°=180°,
解得∠α=75°.
故答案为:75°.
【点睛】
本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.
14.3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是
解析:3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键.
15.【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12
解析:【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12.
故答案为12.
【点睛】
本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.
16.【分析】
通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1
解析:
【分析】
通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,,2,,3,…,,点P的纵坐标规律:,0,,0,0,0,…,确定P2021循环余下的点即可.
【详解】
解:∵图中是边长为1个单位长度的等边三角形,
∴
A2(1,0)
A4(2,0)
A6(3,0)
…
∴An中每6个点的纵坐标规律:,0,,0,﹣,0,
点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,
P运动每6秒循环一次
点P的纵坐标规律:,0,,0,-,0,…,
点P的横坐标规律: ,1,,2,,3,…,,
∵2021=336×6+5,
∴点P2021的纵坐标为,
∴点P2021的横坐标为,
∴点P2021的坐标,
故答案为:.
【点睛】
本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.
三、解答题
17.(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
解析:(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
=4.
故答案为(1)0;(2)4.
【点睛】
本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.
18.(1);(2).
【分析】
(1)根据平方根的定义解答即可;
(2)根据立方根的定义解答即可.
【详解】
(1)x2﹣6,
移项得:,
开方得:x,
解得:;
(2)(2x﹣1)3=﹣4,
变形得:
解析:(1);(2).
【分析】
(1)根据平方根的定义解答即可;
(2)根据立方根的定义解答即可.
【详解】
(1)x2﹣6,
移项得:,
开方得:x,
解得:;
(2)(2x﹣1)3=﹣4,
变形得:(2x﹣1)3=﹣8,
开立方得:,
∴2x=1,
解得:.
【点睛】
本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.
19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【分析】
先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等
解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【分析】
先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.
【详解】
解:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°(垂直的定义),
∴∠EFB=∠ADB(等量代换),
∴EFAD(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠2=∠BAD(等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【点睛】
本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键.
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标
解析:(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
,,;
(2)三角形的面积
;
(3)三角形向上平移2个单位,再向左平移1个单位得到三角形
可得,,,连接,三角形如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.
21.(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b
解析:(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b=;
(2)
=
=
∴的平方根为±3.
【点睛】
此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键.
二十二、解答题
22.8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边
解析:8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边长==.
【点睛】
本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.
二十三、解答题
23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:
解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:如图,过点作,
∴,
∵,
∴.
∴.
∵,
∴,
∴.
(2)补全图形如图2、图3,
猜想:或.
证明:过点作.
∴.
∵,
∴
∴,
∴.
∵平分,
∴.
如图3,当点在上时,
∵平分,
∴,
∵,
∴,
即.
如图2,当点在上时,
∵平分,
∴.
∴.
即.
【点睛】
本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.
24.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵平分,,
∴,
∴,
∴,
∴;
(2)①∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴;
②∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴.
【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.
理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-(∠DHG+∠BGH)
=180°-(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-(180°+∠HAG)
=90°-∠HAG
=90°-(30°+∠FAO+45°)
=52.5°-∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.
26.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文