收藏 分销(赏)

人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc

上传人:人****来 文档编号:4916257 上传时间:2024-10-20 格式:DOC 页数:51 大小:1.93MB
下载 相关 举报
人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc_第1页
第1页 / 共51页
人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc_第2页
第2页 / 共51页
人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc_第3页
第3页 / 共51页
人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc_第4页
第4页 / 共51页
人教版七年级数学下学期期末压轴题素养达标检测卷含答案.doc_第5页
第5页 / 共51页
点击查看更多>>
资源描述

1、一、解答题1如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求; (2)若为直线上一点的面积不大于面积的,求P点横坐标x的取值范围;请直接写出用含x的式子表示y(3)已知点,若的面积为6,请直接写出m的值2如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值3如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,

2、用含的式子表示)4如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间5如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(

3、3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值6阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整证明:过点E作EFAB,则有BEF ABCD, ,FED BEDBEF+FEDB+D(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分ABC,DE平分ADC,且BE,DE所在的直线交于点E如图1,当点B在点A的左侧时,若ABC60,ADC7

4、0,求BED的度数;如图2,当点B在点A的右侧时,设ABC,ADC,请你求出BED的度数(用含有,的式子表示)7阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)(2)8据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数

5、768得到32,因为,请确定的十位上的数是_(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=_;9新定义:对非负数x“四舍五入”到个位的值记为,即当n为非负数时,若,则=n.例如=0,=1,=2,=4,试回答下列问题:(1)填空:=_;如果=2,实数x的取值范围是_.(2)若关于x的不等式组的整数解恰有4个,求的值;(3)求满足的所有非负实数x的值.10规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为正整数)(3)求11阅读材料,

6、回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,则_,_(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元若从下沙江滨站到文海南路站的里程是3.07公里,车费_元,下沙江滨站到金沙湖站里程是7.93公里

7、,车费_元,下沙江滨站到杭州火东站里程是19.17公里,车费_元;若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?12观察下列各式:;根据上面的等式所反映的规律,(1)填空:_;_;(2)计算:13如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且OAB的面积为6(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K

8、,若PK=,求t的值及BPQ的面积14如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)15如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿ABCE运动,最终到达点E设点P运动的时间为t秒(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标(2)在(1)相同条件得到的结论下,是

9、否存在P点使APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由16阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作例如,那么,其中例如,请你解决下列问题:(1)_,_;(2)如果,那么x的取值范围是_;(3)如果,那么x的值是_;(4)如果,其中,且,求x的值17如图1,在直角坐标系中直线与、轴的交点分别为,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围18在平面直角坐标系中,满足(1)直接写出、的值:

10、 ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值19已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金2

11、00元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费20某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案21阅读下列文字,请仔细体会其中的数学思想(1)解方程组,我们利用加减消元法,很快可以求得此方程

12、组的解为 ;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5x,n+3y,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值22如果3个数位相同的自然数m,n,k满足:m+nk,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”例如:因为25,63,88都是两位数,且25+6388,则25和63是一对“黄金搭档数”再如:因为152,514,666都是三位数,且152+514666,则152和514是一对“黄金搭档数”(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s

13、和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s23某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价为多少元.(2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为 元,乙商店的费用为 元.(3)每班配4副乒乓球拍和m(m100)个乒乓球则甲商店的费

14、用为 元,乙商店的费用为 元.(4)若该校只在一家商店购买,你认为在哪家超市购买更划算?24如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合)将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E请回答下列问题:(1)求A、B两点的坐标;(2)设三角形ABC面积为,若47,求m的取值范围;(3)设,请给出,满足的数量关系式,并说明理由25在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为点M的“控变点”(1)点A(1,2)的“控变点”B的坐标为 ;(2)已知点C(m,1)的“控变点

15、”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围26对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,(1)求,的值;(2)求(3)若关于的不等式组恰好有4个整数解,求的取值范围27在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分线交于点,求的度数;如图2,连接,交轴于点若成立设动点的坐标为,求的取值范围28在平面直

16、角坐标系中,点A,B的坐标分别为(1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使SPAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出OPC与PCD、POB的数量关系29阅读以下内容:已知有理数m,n满足m+n3,且求k的值三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组

17、,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用73消去未知数x,也可以用2+5消去未知数y求a和b的值30规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知,则是隐线的亮点的是 ;(2) 设是隐线的两个亮点,求方程中的最小的正整数解;(3)已知是实数, 且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.【参考答案】*试卷处理标记,请不要删除一、解答题1(1)4;(2)或;(3)或【分析】(

18、1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得【详解】解:(1)由题意得:,解得,轴轴,;(2)的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,因此有,解得,此时的取值范围为;如图,当时,则,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;当时,则,由(2)可知

19、,则,即;如图,当时,则,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)可知,则,由题意,分以下三种情况:如图,当时,则,解得,不符题设,舍去;如图,当时,则,解得或(不符题设,舍去);如图,当时,则,解得,符合题设,综上,的值为或【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键2(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=

20、40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的

21、性质是解题的关键3(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD,则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则NPCDABQM,根据和,得出根据CDPNQM,DENB,得出即根据NPAB,得出再由,得出由ABQM,得出因为,代入的式子即可求出【详解】(1)过点E作EFCD,如图,EFCD, , EFAB,CDAB;(2)过点E作HECD,

22、如图,设 由(1)得ABCD,则ABCDHE,又平分,即解得:即;(3)过点N作NPCD,过点M作QMCD,如图,由(1)得ABCD,则NPCDABQM,NPCD,CDQM,,又, , 又PNAB, , 又ABQM, 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系4(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作F

23、LMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,P

24、QMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移

25、至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1

26、804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键5(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K

27、,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平

28、行线性质进行求解是解答本题的关键6(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点A的左侧时,根据ABC60,ADC70,参考小亮思考问题的方法即可求BED的度数;如图2,过点E作EFAB,当点B在点A的右侧时,ABC,ADC,参考小亮思考问题的方法即可求出BED的度数【详解】解:(1)过点E作EFAB,则有BEFB,ABCD,EFCD,FEDD,BEDBEF+FEDB+D;故答案为:B;EF;CD;D;(2)如图1,过点E作EFAB,有BEFEBAABCD,EFCDFEDEDCBEF+FEDEBA+E

29、DC即BEDEBA+EDC,BE平分ABC,DE平分ADC,EBAABC30,EDCADC35,BEDEBA+EDC65答:BED的度数为65;如图2,过点E作EFAB,有BEF+EBA180BEF180EBA,ABCD,EFCDFEDEDCBEF+FED180EBA+EDC即BED180EBA+EDC,BE平分ABC,DE平分ADC,EBAABC,EDCADC,BED180EBA+EDC180答:BED的度数为180【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质7(1)(2)【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每

30、项的整数部分相加,分数部分相加即可解答.【详解】(1)(2)原式【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.8(1)两;(2)2,3;(3)24,-48【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论【详解】解:(1)由103=1000,1003=1000000,100032768100000,10100,是两位数;故答案为:两;(2)只有个位数是2的立方数是个位数是8,的个位上的数是2划去32768后面的三位数768得到32,因为33=27,43

31、=64,273264,3040的十位上的数是3故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两位数;只有个位数是4的立方数是个位数是4,的个位上的数是4划去13824后面的三位数824得到13,因为23=8,33=27,81327,2030=24;由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的立方数是个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,因为43=64,53=125,64110125,4050=-48;故答案为:

32、24,-48【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数9(1)10;(2)(3):0,1,2【详解】分析:(1)利用对非负数x“四舍五入”到个位的值为,进而求解即可;(2)首先将看做一个字母,解不等式,进而根据整数解的个数得出m的取值;(3)利用得出关于x的不等式,求解即可.详解:(1)10,;(2)解不等式组得:由不等式组的整数解恰有4个得,;(3),x为非负整数,x的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.10(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第

33、5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为则第5个式子为:故应填:;(2)第1个等式的分母为:第2个等式的分母为:第3个等式的分母为:第4个等式的分母为:归纳类推得,第n个等式的分母为:则第n个等式为:(n为正整数)故应填:;(3)由(2)的结论得:则.【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.11(1);(2)2;3;6这个乘客花费7元乘坐的地铁

34、行驶的路程范围为:大于公里小于等于32公里【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得【详解】(1)故答案为:;(2)3.07公里需要2元7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元7.93公里所需费用为:(元)公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;公里所需费用为:(元)故答案为:2;3;6由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至1

35、2公里2元,12公里至24公里2元;乘坐24公里所需费用为:(元)由表格可知:乘坐24公里以上的部分,每一元可以坐8公里7元可以乘坐的地铁最大里程为:(公里)这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键12(1);(2).【分析】(1)根据已知数据得出规律,进而求出即可;(2)利用规律拆分,再进一步交错约分得出答案即可【详解】解:(1);(2)=.【点睛】此题主要考查了实数运算中的规律探索,根据

36、已知运算得出数字之间的变化规律是解决问题的关键13(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时; (3)过点K作KHOA用H根据SBPK+SAKH=SAOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1),2(a+2)-3(a-2)=6,-a+4=0,a=4,A(4,0),SOAB=6,4OB=6,OB=3,B(0,3)(2)当点P在线段OB上时,S=PQPB=4(3-t)=-2t+6当点P在线段OB的延长线上时,S=PQ

37、PB=4(t-3)=2t-6综上所述,S=(3)过点K作KHOA用HSBPK+SAKH=SAOB-S长方形OPKH,PKBP+AHKH=6-PKOP,(3-t)+(4-)t=6-t,解得t=1,SBPQ=-2t+6=4【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题14(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点

38、E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BE

39、F=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的度数为n+40或n-40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键15(1)建立直角坐标系见解析,当0t4时,即当点P在线段AB上时,其坐标为:P(2t,0),当4t7时,即当点P在线段BC上时,其坐标为:P(8,2t8),当7t10时,即当点P在线段CE上时,其坐标为:P(222t,6);(2)存在,当点P的坐标分别为:P

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服