资源描述
一、解答题
1.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.
(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;
(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;
(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.
2.已知点C在射线OA上.
(1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;
(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示)
(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.
3.已知,.点在上,点在 上.
(1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明)
(2)如图 3中,平分,平分,且,求的度数;
(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.
4.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
5.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.
(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为 ;
(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.
6.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
7.阅读型综合题
对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对.
(1)若,则 , ;
(2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.
8.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.
(1)2020属于 类(填A,B或C);
(2)①从A类数中任取两个数,则它们的和属于 类(填A,B或C);
②从A、B类数中任取一数,则它们的和属于 类(填A,B或C);
③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C);
(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号).
①属于C类;②属于A类;③,属于同一类.
9.先阅读然后解答提出的问题:
设a、b是有理数,且满足,求ba的值.
解:由题意得,
因为a、b都是有理数,所以a﹣3,b+2也是有理数,
由于是无理数,所以a-3=0,b+2=0,
所以a=3,b=﹣2, 所以.
问题:设x、y都是有理数,且满足,求x+y的值.
10.观察下列各式:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
……
(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.
(2)你能否由此归纳出一般性规律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.
(3)根据以上规律求1+3+32+…+349+350的结果.
11.阅读下面的文字,解答问题.
对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差.
例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.
(1)仿照以上方法计算:[]= {5﹣}= ;
(2)若[]=1,写出所有满足题意的整数x的值: .
(3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0= ,n= .
12.阅读材料:求的值.
解:设①,将等式①的两边同乘以2,
得②,
用②-①得,
即.
即.
请仿照此法计算:
(1)请直接填写的值为______;
(2)求值;
(3)请直接写出的值.
13.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(﹣3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点O出发,沿OB→BC→CD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;
①当t为多少秒时,点P的横坐标与纵坐标互为相反数;
②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标
14.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
15.如图,已知,,且满足.
(1)求、两点的坐标;
(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;
(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.
16.如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数.
(1)﹣3,0,2.5是连动数的是 ;
(2)关于x的方程2x﹣m=x+1的解满足是连动数,求m的取值范围 ;
(3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围.
17.如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'
(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.
(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.
(3)求四边形ABCD的面积.
18.如图1,在平面直角坐标系中,,且满足,过作轴于.
(1)求的面积.
(2)若过作交轴于,且分别平分,如图2,求的度数.
(3)在轴上存在点使得和的面积相等,请直接写出点坐标.
19.(阅读感悟)
一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足①,②,求和的值.
本题的常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.
(解决问题)
(1)已知二元一次方程组,则 , .
(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?
(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,求的值.
20.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”.
(1)请判断7441和5436是否为“诚勤数”并说明理由;
(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.
21.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.
(1)分数5,10,15,20中,每人得分不可能是________分.
(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.
①问(1)班有多少人得满分?
②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?
22.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点.
(1)若,求C点的坐标;
(2)若,连接,过点B作的垂线l
①判断直线l与x轴的位置关系,并说明理由;
②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由.
23.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
(1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个?
(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?
(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?
24.阅读材料:
如果x是一个有理数,我们把不超过x的最大整数记作[x] .
例如,[3.2]=3,[5]=5,[-2.1]=-3.
那么,x=[x]+a,其中0≤a<1.
例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.
请你解决下列问题:
(1)[4.8]= ,[-6.5]= ;
(2)如果[x]=3,那么x的取值范围是 ;
(3)如果[5x-2]=3x+1,那么x的值是 ;
(4)如果x=[x]+a,其中0≤a<1,且4a= [x]+1,求x的值.
25.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3).
(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ;
(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ;
(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ;
(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围.
26.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.
将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.
例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.
根据以上定义,解答下列问题:
(1)填空:①下列两位数:20,21,22中,“互异数”为________;
②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)
(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;
(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;
(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.
27.已知关于x、y的二元一次方程
(1)若方程组的解x、y满足,求a的取值范围;
(2)求代数式的值.
28.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD
(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;
(2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由.
29.对,定义一种新的运算,规定:(其中).
(1)若已知,,则_________.
(2)已知,.求,的值;
(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围.
30.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:
(1) 已知,则是隐线的亮点的是 ;
(2) 设是隐线的两个亮点,求方程中的最小的正整数解;
(3)已知是实数, 且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1);(2);(3)存在点,其坐标为或.
【分析】
(1)利用平移得性质确定出平移得单位和方向;
(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可);
(3)设出点P的坐标,表示出PC用,建立方程求解即可.
【详解】
(1)∵B(3,0)平移后的对应点,
∴设,
∴
即线段向左平移5个单位,再向上平移4个单位得到线段
∴点平移后的对应点;
(2)∵点C在轴上,点D在第二象限,
∴线段向左平移3个单位,再向上平移个单位,∴
连接,
,∴
∴;
(3)存在
设点,∴
∵,
∴
∴,
∴
∴存在点,其坐标为或.
【点睛】
本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.
2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′
【分析】
(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;
(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;
(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.
【详解】
解:(1)∵CD∥OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;
(2)∠OCD+∠BO′E′=360°-α.
证明:如图②,过O点作OF∥CD,
∵CD∥O′E′,
∴OF∥O′E′,
∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,
∴∠OCD+∠BO′E′=360°-α;
(3)∠AOB=∠BO′E′.
证明:∵∠CPO′=90°,
∴PO′⊥CP,
∵PO′⊥OB,
∴CP∥OB,
∴∠PCO+∠AOB=180°,
∴2∠PCO=360°-2∠AOB,
∵CP是∠OCD的平分线,
∴∠OCD=2∠PCO=360°-2∠AOB,
∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,
∴360°-2∠AOB+∠BO′E′=360°-∠AOB,
∴∠AOB=∠BO′E′.
【点睛】
此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.
3.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EHAB,如图1,
∴∠BME=∠MEH,
∵ABCD,
∴HECD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN−∠END.
如图2,过F作FHAB,
∴∠BMF=∠MFK,
∵ABCD,
∴FHCD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF−∠FND=180°,
∴2∠BME+2∠END+∠BMF−∠FND=180°,
即2∠BMF+∠FND+∠BMF−∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQNP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.
4.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
5.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;
(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,
过O作OE∥AB,
∵AB∥CD,
∴AB∥OE∥CD,
∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,
∴∠POQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即12t=45+3t,
解得,t=5;
②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣180=45+3t,
解得,t=25;
③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣360=45+3t,
解得,t=45;
综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
6.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
7.(1)5,3;(2)有正格数对,正格数对为
【分析】
(1)根据定义,直接代入求解即可;
(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可.
【详解】
解:(1)∵
∴5,3
故答案为:5,3;
(2)有正格数对.
将代入,
得出,,
解得,,
∴,
则
∴
∵,为正整数且为整数
∴,,,
∴正格数对为:.
【点睛】
本题考查的知识点是实数的运算,理解新定义是解此题的关键.
8.(1)A;(2)①B;②C;③B;(3)①③.
【分析】
(1)计算,结合计算结果即可进行判断;
(2)①从A类数中任取两个数进行计算,即可求解;
②从A、B两类数中任取两个数进行计算,即可求解;
③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;
(3)根据m,n的余数之和,举例,观察即可判断.
【详解】
解:(1)根据题意,
∵,
∴2020被3除余数为1,属于A类;
故答案为:A.
(2)①从A类数中任取两个数,
如:(1+4)÷3=1…2,(4+7)÷3=3…2,……
∴两个A类数的和被3除余数为2,
则它们的和属于B类;
②从A、B类数中任取一数,与①同理,
如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……
∴从A、B类数中任取一数,则它们的和属于C类;
③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则
,
∴,
∴余数为2,属于B类;
故答案为:①B;②C;③B.
(3)从A类数中任意取出m个数,从B类数中任意取出n个数,
余数之和为:m×1+n×2=m+2n,
∵最后的结果属于C类,
∴m+2n能被3整除,即m+2n属于C类,①正确;
②若m=1,n=1,则|mn|=0,不属于B类,②错误;
③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;
综上,①③正确.
故答案为:①③.
【点睛】
本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.
9.7或-1.
【分析】
根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.
【详解】
解:∵,
∴,
∴=0,=0
∴x=±4,y=3
当x=4时,x+y=4+3=7
当x=-4时,x+y=-4+3=-1
∴x+y的值是7或-1.
【点睛】
本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.
10.(1)x7-1;(2)xn+1-1;(3).
【分析】
(1)仿照已知等式写出答案即可;
(2)先归纳总结出规律,然后按规律解答即可;
(3)先利用得出规律的变形,然后利用规律解答即可.
【详解】
解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;
(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;
(3)原式=×(3-1)(1+3+32+···+349+350)= ×(x50+1-1)=
故答案为:(1)x7-1;(2)xn+1-1;(3).
【点睛】
本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.
11.(1)2;3﹣;(2)1、2、3;(3)256,4
【分析】
(1)依照定义进行计算即可;
(2)由题可知,,则可得满足题意的整数的的值为1、2、3;
(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算.
【详解】
解:(1)由定义可得,,,
.
故答案为:2;.
(2),
,即,
整数的值为1、2、3.
故答案为:1、2、3.
(3),即,
可设,且是自然数,
是符合条件的所有数中的最大数,
,
,
,
,
,
即.
故答案为:256,4.
【点睛】
本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.
12.(1)15;(2);(3).
【分析】
(1)先计算乘方,即可求出答案;
(2)根据题目中的运算法则进行计算,即可求出答案;
(3)根据题目中的运算法则进行计算,即可求出答案;
【详解】
解:(1);
故答案为:15;
(2)设①,把等式①两边同时乘以5,得
②,
由②①,得:,
∴,
∴;
(3)设①,
把等式①乘以10,得:
②,
把①+②,得:,
∴,
∴,
∴
.
【点睛】
本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.
13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)
【分析】
(1)根据BC=AE=3,OA=1,推出OE=2,可得结论.
(2)①判断出PB=CD,即可得出结论;
②根据△PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标.
【详解】
解:(1)∵C(-3,2),A(1,0),
∴BC=3,OA=1,
∵BC=AE=3,
∴OE=AE-AO=2,
∴E(-2,0);
(2)①∵点C的坐标为(-3,2)
∴BC=3,CD=2,
∵点P的横坐标与纵坐标互为相反数;
∴点P在线段BC上,
∴PB=CD=2,
即t=(2+2)÷1=4;
∴当t=4秒时,点P的横坐标与纵坐标互为相反数;
②∵△PEA的面积为2,A(1,0),E(-2,0),
∴AE=3,
设点P到AE的距离为h
∴,
∴h=,
即点P到AE的距离为,
∴点P的坐标为(0,)或(-3,).
【点睛】
本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.
14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
15.(1),; (2);(3)
【解析】
【分析】
(1)利用非负数的性质即可解决问题;
(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标.
(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.
【详解】
解:(1) ,
∴,
,,
,,
,,
(2)由
∴,
,
,
如图1,连,作轴,轴,
,
即
,
,
,
而,
,
,
,
(3)如图2:
∵EF∥AB,
∴,
∴,即,
,
,
,
,
,
,
,
,
,
,
,
,
,
【点睛】
本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.
16.(1)﹣3,2.5;(2)﹣4<m<﹣2或0<m<2;(3)1≤a<2.
【分析】
(1)根据连动数的定义逐一判断即得答案;
(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;
(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a的不等式组,解不等式组即可求得答案.
【详解】
解:(1)设点P表示的数是x,则,
若点Q表示的数是﹣3,由可得,解得:x=﹣1或﹣5,所以﹣3是连动数;
若点Q表示的数是0,由可得,解得:x=2或﹣2,所以0不是连动数;
若点Q表示的数是2.5,由可得,解得:x=﹣0.5或4.5,所以2.5是连动数;
展开阅读全文