1、深圳市七年级下册数学期末压轴难题试卷一、选择题125的平方根是()A5B5CD52在以下现象中,属于平移的是( )在荡秋千的小朋友的运动;坐观光电梯上升的过程;钟面上秒针的运动;生产过程中传送带上的电视机的移动过程ABCD3在平面直角坐标系中,点(3,2)在()A第一象限B第二象限C第三象限D第四象限4下列命题:过直线外一点有且只有一条直线与已知直线平行;在同一平面内,过一点有且只有一条直线与已知直线垂直;图形平移的方向一定是水平的;内错角相等其中真命题为( )ABCD5如果,直线,则等于( )ABCD6下列说法中正确的是()A的平方根是B的算术平方根是C与相等D的立方根是7如图,中,平分,于
2、点,则的度数为( )A134B124C114D1048某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,当时,表示非负实数的整数部分,例如,按此方案,第2021棵树种植点的坐标为( )ABCD二、填空题9已知+|3x+2y15|0,则_10平面直角坐标系中,点关于轴的对称点是_11三角形ABC中,A=60,则内角B,C的角平分线相交所成的角为_12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度13如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处若12130,则BC_14如图,四个实数m,n,p,q在数轴上对应的点分别
3、为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是_15在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是_16如图,点,根据这个规律,探究可得点的坐标是_三、解答题17计算: (1)3-(-5)+(-6) (2)18已知:,求下列各式的值:(1)的值;(2)的值19填空并完成以下过程:已知:点P在直线CD上,BAP+APD180,12请你说明:EF解:BAP APD180,(_)AB_,(_)BAP_,(_)又12,(已知)3_1,4_2,3_,(等式的性质)AEPF,(_)EF(_)20如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(
4、I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形;(2)过点画线段使且;(3)图中与的关系是_;(4)点在线段上,点是直线上一动点线段的最小值为_21实数在数轴上的对应点的位置如图所示,(1)求的值;(2)已知的小数部分是,的小数部分是,求的平方根二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23已知,定点,
5、分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)24如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系25模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+
6、2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)26如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那
7、么图中的和是_.【参考答案】一、选择题1A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:(5)22525的平方根5故选A【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移平移不改变图形的形状和大小平移可以不是水平的据此解答【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移平移不改变图形的形状和大小平移可以不是水平的据此解答【详解】在荡秋千的小朋
8、友的运动,不是平移;坐观光电梯上升的过程,是平移;钟面上秒针的运动,不是平移;生产过程中传送带上的电视机的移动过程是平移;故选:B【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选3B【分析】根据各象限内点的坐标特征解答即可【详解】解:点在第二象限,故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4A【分析】根据两直线的位置关系即可判断.【详解】过直线外一点有且只有一条直线与已知直线平行,正确;在同一平面内,过一点
9、有且只有一条直线与已知直线垂直,正确;图形平移的方向不一定是水平的,故错误;两直线平行,内错角才相等,故错误故正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=65,EFC=180-DFE =115,故选B【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6C【分析】根据平方根,立方根,算术平方根的定义解答即可【详解】A的平方根为,故选项错误;B的算术平方根是,故选项错误;C,故选项正确;D的立方根是,故选项错误;故选:C【点睛】本题考查了平方根
10、,立方根,算术平方根的定义,熟练掌握是解题关键7B【分析】已知AE平分BAC,EDAC,根据两直线平行,同旁内角互补可知DEA的度数,再由周角为360,求得BED的度数即可【详解】解:AE平分BAC,BAE=CAE=34,EDAC,CAE+AED=180,DEA=180-34=146,BEAE,AEB=90,AEB+BED+AED=360,BED=360-146-90=124,故选:B【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键8A【分析】根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可【详解】解:由题意可知,
11、将以上等式相加,得:,当k=20解析:A【分析】根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可【详解】解:由题意可知,将以上等式相加,得:,当k=2021时,;,将以上等式相加,得:,当k=2021时,第2021棵树种植点的坐标为,故选:A【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键二、填空题93【分析】直接利用非负数的性质得出x,y的值进而得出答案【详解】+|3x+2y15|0,x+3=0,3x+2y-15=0,x=-3,y=12,=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的
12、值进而得出答案【详解】+|3x+2y15|0,x+3=0,3x+2y-15=0,x=-3,y=12,=.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键10【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐
13、标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;11120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),解析:120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,再代入DFE=BFC=180-(FBC+FCB),即可解答试题解析:B+C=180-A=180-60=120,又
14、因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,DFE=180-(FBC+FCB),=180-60,=120;DFE的邻补角的度数为:180-120=60考点:角的度量12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CM
15、E=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.13115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+解析:115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+D+(AMN+DNM)=360,A+D+(B+C)=360,B+C=AMN+DNM=115故答案为:115【点睛】本题考查的是翻折变换,
16、熟知图形翻折不变性的性质是解答此题的关键14【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故答案为:【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答15或【分析】设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标【详解】设点B的坐标为,轴,点
17、A(1,2)B点的纵坐标也是2,即 ,或 ,解得或 ,点解析:或【分析】设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标【详解】设点B的坐标为,轴,点A(1,2)B点的纵坐标也是2,即 ,或 ,解得或 ,点B的坐标为或故答案为:或【点睛】本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键16【分析】由图形得出点的横坐标依次是0、1、2、3、4、,纵坐标依次是0、2、0、0、2、0、,四个一循环,继而求得答案【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、解析:【分析】由图形得出点的横坐标依次是0、1、2、3、4、,纵坐标依
18、次是0、2、0、0、2、0、,四个一循环,继而求得答案【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、,纵坐标依次是0、2、0、0、2、0、,四个一循环,故点坐标是故答案是:【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律三、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减
19、计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2)解析:(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2),=13【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的
20、变式进行计算是解决本题的关键19已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解】解:BAP+APD180(已知),ABCD(同旁内角互补两直线平行),BAPAPC(两直线平行内错角相等),又12,(已知),3BAP1,4APC2,34(等式的性质),AEPF(内错角相等两直
21、线平行),EF(两直线平行内错角相等)【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键20(1)见解析;(2)见解析;(3),AD;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段ADBC,AD=BC,即可;(3)由平移的性质可得,BC,从而可以解析:(1)见解析;(2)见解析;(3),AD;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段ADBC,AD=BC,即可;(3)由平移的性质可得,BC,从而可以得到,AD;(4)根据点到直线的距离垂线段最短,可知当BHCE时BH最短,由此利用三角形面积公式求解即可【详解】解
22、:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得 ,BC,由AD=BC,ADBC,从而可以得到,AD;故答案为:,AD;(4)根据点到直线的距离垂线段最短,可知当BHCE时BH最短,如图所示:ADBC, ,点H是直线CE上一动点线段BH的最小值为故答案为:【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解21(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可解析:(1);(2
23、)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可求出n然后求出2m2n1,再求平方根【详解】解:(1)由图知:,;(2),整数部分是3,;的整数部分是6,的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理
24、由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形
25、纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在
26、的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键24(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据
27、角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键25(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF解析:(1)证明
28、见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF180,同理2NEF18012MEN360 【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得1+2+3+4+5+6=1805=900;由上面的解题方法可得:1+2+3+4+5+6n=180(n1),故答案是:900 , 180(n1);(3)过点O作SRAB,ABCD,SRCD,AM1OM1OR同理C MnOMnORA M1OCMnOM1ORMnOR,A M1OCMnOM1OMnm,M1O平分AM1M2
29、,AM1M22A M1O,同理CMnMn-12CMnO,AM1M2CMnMn-12AM1O2CMnO2M1OMn2m,又A M1M22+3+4+5+6n1CMnMn-1180(n1),2+3+4+5+6n1(180n1802m)点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要26(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据
30、题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度