收藏 分销(赏)

七年级数学下学期期末几何压轴题试卷含答案(6).doc

上传人:人****来 文档编号:4915867 上传时间:2024-10-20 格式:DOC 页数:49 大小:1.91MB
下载 相关 举报
七年级数学下学期期末几何压轴题试卷含答案(6).doc_第1页
第1页 / 共49页
七年级数学下学期期末几何压轴题试卷含答案(6).doc_第2页
第2页 / 共49页
七年级数学下学期期末几何压轴题试卷含答案(6).doc_第3页
第3页 / 共49页
七年级数学下学期期末几何压轴题试卷含答案(6).doc_第4页
第4页 / 共49页
七年级数学下学期期末几何压轴题试卷含答案(6).doc_第5页
第5页 / 共49页
点击查看更多>>
资源描述

1、一、解答题1问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1x2,则ABy轴,且线段AB的长度为|y1y2|;若y1y2,则ABx轴,且线段AB的长度为|x1x2|;(应用):(1)若点A(1,1)、B(2,1),则ABx轴,AB的长度为 (2)若点C(1,0),且CDy轴,且CD2,则点D的坐标为 (拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)|x1x2|+|y1y2|;例如:图1中,点M(1,1)与点N(1,2)之间的折线距离为d(M,N)|11|+|1(2)|

2、2+35解决下列问题:(1)如图1,已知E(2,0),若F(1,2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)3,则t (3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q) 2问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之间的数量关系并证明3直线ABCD,点P为平面内一点,连接AP,C

3、P(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与APC之间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理由4点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M

4、,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)5综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?请说明理由若点不在线段上运动时(点与点、三点都不重合),请你画出满足条件的所有图形并直接写出,之

5、间的数量关系6如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系7(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根华罗庚脱口而出:“39”邻座的乘客十分惊奇,忙间其中计算的奥妙你知道怎样迅速准确的计算

6、出结果吗?请你按下面的步骤试一试:第一步:,能确定59319的立方根是个两位数第二步:59319的个位数是9,能确定59319的立方根的个位数是9第三步:如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3,因此59319的立方根是39(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤(2)填空:_8对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与

7、十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:_,并说明你猜想的正确性9对于有理数、,定义了一种新运算“”为:如:,(1)计算:_;_;(2)若是关于的一元一次方程,且方程的解为,求的值;(3)若,且,求的值10如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形由此得到了一种能在数轴上画出无理数对应点的方法(1)图2中A、B两点表示的数分别为_,_; (2)请你参照上面

8、的方法:把图3中的长方形进行剪裁,并拼成一个大正方形在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长_(注:小正方形边长都为1,拼接不重叠也无空隙) 在的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及(图中标出必要线段的长)11探究与应用:观察下列各式:1+3 21+3+5 21+3+5+7 21+3+5+7+9 2问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(1)+(3)+(5)+(7)+(2019)(结果用科学记数法表示)12小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子

9、相加减;异分母分数相加减,先通分,转化为同分母分数,再加减”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:,猜想并写出第个式子的结果: (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果: ; ;(3)拓展延伸计算:13如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式14已知,ABCD,点E在CD上,点G,F在AB上,点

10、H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数15如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,其中a、b满足关系式:_,_,的面积为_;如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数

11、量关系?请写出它们之间的数量关系并请说明理由16如果 x 是一个有理数,我们定义x 表示不小于 x 的最小整数 如3.2 = 4 , -2.6 = -2 , 5 = 5 , -6 = -6.由定义可知,任意一个有理数都能写成 x = x - b 的形式( 0b1 )(1)直接写出x 与 x , x + 1的大小关系;提示1:用“不完全归纳法”推导x 与 x , x + 1的大小关系;提示2:用“代数推理”的方法推导x 与 x , x + 1的大小关系(2)根据(1)中的结论解决下列问题: 直接写出满足3m + 7 = 4 的 m 取值范围; 直接写出方程3.5n - 2 = 2n + 1 的解

12、.17在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(1,n)(1)m=_,n=_(2)点P的坐标是(c,0)设ABP=,请写出BPD和PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)18如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存

13、在怎样的数量关系,并说明理由19我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能20阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质

14、,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.22为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信

15、息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下超过15吨但不超过25吨的部分超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费_元;(用,的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求,的值(3)在第(2)题的条件下,若交水费76.5元,求本月用水量(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的,的值分别上调了整数角钱(没超过1元),其他都没变”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况23在

16、平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|ab2|0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,D(1)请直接写出A、B、C、D四点的坐标(2)点E在坐标轴上,且SBCES四边形ABDC,求满足条件的点E的坐标(3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)求:的值24如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒(1)当时, 平方厘米;当时, 平方厘米;(

17、2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值25阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和 (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正

18、整数解有多少组? 请直接写出答案26对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,(1)求,的值;(2)求(3)若关于的不等式组恰好有4个整数解,求的取值范围27如图,在平直角坐标系中,ABO的三个顶点为A(a,b),B(a,3b),O(0,0),且满足|b2|0,线段AB与y轴交于点C(1)求出A,B两点的坐标;(2)求出ABO的面积;(3)如图,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记的面积为S,若24S32,求点的横坐标的取值范围28在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(

19、2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围29如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CBy轴交y轴负半轴于B(0,b),且|a3|+(b+4)20,S四边形AOBC16(1)求点C的坐标(2)如图2,设D为线段OB上一动点,当ADAC时,ODA的角平分线与CAE的角平分线的反向延长线交于点P,求APD的度数;(点E在x轴的正半轴)(3)如图3,当点D在线段OB上运动时,作DMAD交BC于M点,BMD、DAO的平分线交于N点,则点D在运动过程中,

20、N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由30对,定义一种新的运算,规定:(其中)(1)若已知,则_(2)已知,求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围【参考答案】*试卷处理标记,请不要删除一、解答题1【应用】:(1)3;(2)(1,2)或(1,2);【拓展】:(1)5;(2)2或2;(3)4或8【分析】(应用)(1)根据若y1y2,则ABx轴,且线段AB的长度为|x1x2|,代入数据即可得出结论;(2)由CDy轴,可设点D的坐标为(1,m),根据CD2,可得|0m|2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离

21、公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|12|3故答案为:3(2)由CDy轴,可设点D的坐标为(1,m),CD2,|0m|2,解得:m2,点D的坐标为(1,2)或(1,2)故答案为:(1,2)或(1,2)(拓展):(1)d(E,F)|2(1)|+|0(2)|5故答案为:5(2)E(2,0),H(1,t),

22、d(E,H)3,|21|+|0t|3,解得:t2故答案为:2或2(3)由点Q在x轴上,可设点Q的坐标为(x,0),三角形OPQ的面积为3,|x|33,解得:x2当点Q的坐标为(2,0)时,d(P,Q)|32|+|30|4;当点Q的坐标为(2,0)时,d(P,Q)|3(2)|+|30|8故答案为:4或8【点睛】本题是三角形综合题目,考查了新定义、两点间的距离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键2(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁

23、内角,利用平行线性质,可得APC=113;(2)过过作交于,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:点P在BA的延长线上,当在之间时(点不与点,重合),根据平行线的性质即可得出答案【详解】解:(1)过作,;(2),理由如下:如图3,过作交于,又;(3)当在延长线时(点不与点重合),;理由:如图4,过作交于,又,;当在之间时(点不与点,重合),理由:如图5,过作交于,又【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角3(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先

24、过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得BAKAKE,DCKCKE,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BAKDCKAPC【详解】(1)如图1,过P

25、作PEAB,ABCD,PEABCD,APEBAP,CPEDCP,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFAB,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCAPC理由:如图3,过K作KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,APCBAPDCP,BAKBAP,DCK

26、DCP,BAKDCKBAPDCP(BAPDCP)APC,AKCAPC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算4(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如

27、图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF

28、,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型5(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;(2);理由如下:如图,过作交于, , ; 当点在延长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,

29、CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系6(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD

30、,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键7(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可【详解】解:(1)第一步:,能确定110592的立方根

31、是个两位数第二步:的个位数是2,能确定110592的立方根的个位数是8第三步:如果划去110592后面的三位592得到数110,而,则,可得,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:,能确定21952的立方根是个两位数第二步:的个位数是2,能确定21952的立方根的个位数是8第三步:如果划去21952后面的三位952得到数21,而,则,可得,由此能确定21952的立方根的十位数是2,因此21952的立方根是28即,故答案为:28【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度8(1

32、);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都

33、会出现一次的特点,区别数字与多为数的不同9(1)5;(2)1;(3)16【分析】(1)根据题中定义代入即可得出;(2)根据,讨论3和 的两种大小关系,进行计算;(3)先判定A、B的大小关系,再进行求解【详解】(1)根据题意:,(2), 若,则,解得,若,则,解得(不符合题意),(3),得,【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键10(1),;(2)图见解析,;见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,

34、对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N【详解】(1)由图1知,小正方形的对角线长是,图2中点A表示的数是,点B表示的数是,故答案是:,;(2)长方形的面积是5,拼成的正方形的面积也应该是5,正方形的边长是,如图所示:故答案是:;如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解11(1)2、3、4、5;(2)第n个等式为1+3+5+7+(2n+1)n2;(3)1.008016106【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.

35、(3) 先提取符号,再用规律解题.【详解】解:(1)1+3221+3+5321+3+5+7421+3+5+7+952故答案为:2、3、4、5;(2)第n个等式为1+3+5+7+(2n+1) (3)原式(1+3+5+7+9+2019)101021.0201106【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.12(1) ;(2);(3) 【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的

36、值【详解】解:(1)由题目中的式子可得,故答案为:;(2),故答案为:;,故答案为:;(3)【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值13(1);(2)或;点在B点左侧时,;点在B点右侧时,【分析】(1)根据非负数的性质分别求出、,根据平移规律得到平移方式,再由平移的坐标变化规律求出点的坐标;(2)设,根据三角形的面积公式列出方程,解方程求出,得到点P的坐标;分点点在B点左侧、点在B点右侧时,过点P作,根据平行线的性质解答【详解】解:(1),解得,平移线段得到线段,使点与点对应,平移线段向上平移4个单位,再向右平移2个单

37、位得到线段,即;(2)设,线段平移得到线段,解得,当P在B点左侧时,坐标为(1,0),当P在B点右侧时,坐标为(7,0),或;I、点在射线(不与点,重合)上,点在B点左侧时,满足的关系式是理由如下:如图1,过点作,由平移得到,点与点对应,点与点对应,;即,II、如图2,点在射线(不与点,重合)上,点在B点右侧时,满足的关系式是同的方法得,;即:综上所述:点在B点左侧时,点在B点右侧时,【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式关键是理解平移规律,作平行线将相关角进行转化14(1)见解析;(2)见解析;(3)40【分析】(1)根

38、据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PH

39、E2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键15(1);6;(2)证明见解析;(3),理由见解析.【详解】分析:(1)求出CD的长度,再

40、根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明ACD=ACE,推出DCE=2ACD,再证明ACD=BCO,BEC=DCE=2ACD即可解决问题;【解答】(1)解:如图1中,|a+4|+(b-a-1)2=0,a=-4,b=-3,点C(0,-4),D(-3,-4),CD=3,且CDx轴,BCD的面积=43=6;故答案为-4,-3,6(2)如图2中,CPQ=CQP=OPB,ACBC,CBQ+CQP=90,又ABQ+CPQ=90,ABQ=CBQ,BQ平分CBA(3)如图3中,结论:BEC=2BCO理由:ACBC,ACB=90,ACD+BCF=90,CB平分ECF,ECB=BCF,ACD+ECB=90,ACE+ECB=90,ACD=ACE,DCE=2ACD,ACD+ACO=90,BCO+ACO=

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服