资源描述
六年级人教版上册数学计算题附答案
1.直接写出得数。
① ②
③ ④
⑤ ⑥
⑦ ⑧155cm∶1m(化成最简单的整数比)
2.直接写得数。
3.直接写得数。
4.直接写得数。
1.69+0.1= 0.52=
5.直接写得数。
10-5.2= 35×2%= 12.5×24=
2÷7= 1-1÷4=
6.直接写出得数。
0.46+3.8= 0.125×2.4= 42÷0.7= 2.5×0÷3+3=
45%+1.51= 0.72×= 4.25×99+4.25=
7.直接写出得数。
57+430= 20.6-10.57=
8.直接写得数。
0.5×0.3= 0.08×6= 0.46+0.34= 1.5÷0.05=
6.8÷10%= 0.3÷6= = 301-199= 0.24×300=
9.直接写得数。
∶
10.直接写得数。
19+24= 5-1.6= 3.8÷2= 1.5×4=
70-18= 0.25÷0.1= 3.5+0.7= 0.4×0.2=
5÷1000= 1-= ×= ÷=
11.直接写出得数。
88+8.8= 90÷5= 0.1÷0.2= 0.12×0.8= 0.32=
÷10= ×0.25= -= += ×7÷×7=
12.直接写出得数。
13.直接写得数。
= 32×= 5+0.5÷0.5-0.5= 36×(-)=
0.875×24= 4.2÷0.07= ÷= 2.4×5÷2.4×5=
14.直接写出得数。
3.3-3.3×1= +×= =
0.25×0.8= 503-298≈ ÷0.125= 37.2÷0.4=
15.直接写出得数。
(1)3.26+2.4= (2)1.52= (3)4.82-0.99=
(4)1-75%= (5)6.4×= (6)3.6÷0.6=
(7)×5÷×5= (8)-×0=
16.用简便方法计算下面各题。
5.78-1.26-2.74
17.怎样简便怎样算。
18.用合理的方法计算,并写出过程。
5.1÷0.17+2.6×6 ×125×27
[1-(+)]÷ 555×13-111×15
19.能简算的要简算。
[1-(+)]÷ (+)×11+
1.68×13.5-1.68×3.5 29.4÷2.8×(3.5-2.3)
20.选择合适的方法计算下面各题。
① ② ③
21.计算(能简算的要简算)。
22.脱式计算,能简算的要简算。
23.用喜欢的方法计算。
(1.5-1.5×0.6)÷0.8 73.2÷24+2.5
24.用你喜欢的方法计算下面各题。
(1)4.36×250%+2.5×3.64+5 (2)9×÷(9÷)
(3) (4)
25.下面各题怎样简便就怎样算。
26.计算下面各题,怎样简便就怎样算。
27.计算下面各题,能简算的要简算。
28.脱式计算(能简算的要简算)。
(1)270-49-156 (2)(5.9+1.65)÷0.25 (3)3.8×99+3.8
(4)4×0.37×25 (5)÷[×(-)] (6)÷7+×
29.计算,能简算的要简算。
30.简便计算。
31.解方程(比例)。
(1) (2)
32.解方程。
① ②
33.解方程。
x-20%x=440
34.解方程。
35.解方程。
(1)x+=2 (2)x-4=16 (3)(1-82%)x=270
36.解方程。
37.解方程。
38.解方程。
39.解方程。
(1)x-15%x=18 (2)(x-1.5)×=6 (3)40%x-=
40.解方程。
41.解方程。
42.解方程。
43.解方程。
x-20%x=9.6
44.解方程。
45.解方程。
46.求下图阴影部分的面积,单位:cm。
47.求如图中阴影部分的面积。
48.求下面图形阴影部分的面积和周长。
49.求如图中阴影部分的面积。
50.求阴影部分的周长。(单位:cm)
51.计算下图的面积(单位:dm)。
52.求下面图形中阴影部分的面积。(单位:厘米)
53.求下图阴影部分的面积。
54.如图,求下面图形中阴影部分的面积。
55.求下面阴影部分的面积。(单位:厘米)
56.如图,已知梯形的面积是51cm2,求阴影部分的面积。
57.求下列图形中阴影部分的周长。(单位:厘米)
58.求下图中阴影部分的面积。(单位:cm)
59.求下图中阴影部分的面积。
60.求阴影部分的面积。
【参考答案】
1.①;②
③0.03;④1.5
⑤0.24;⑥33
⑦;⑧31∶20
【解析】
2.;;1.2;;
;16;;15.7
【解析】
3.;;6.6;;
10;;0.54;3.6
【解析】
6.6
10 0.54 3.6
4.79;;0.25;;
2.6;;99;
【解析】
5.8;;0.7;300;4;
0.81;600;18x2;;
【解析】
6.26;0.3;60;3
1.96;0.4;425;
【解析】
7.487;10.03;0.09;9
;2;;16
【解析】
8.15;;0.48;0.8;30
68;0.05;;102;72
【解析】
9.;1;1.8;;5
;2.1;3;7.99;
【解析】
10.43;3.4;1.9;6
52;2.5;4.2;0.08
0.005;;;4
【解析】
11.8;18;0.5;0.096;0.09
;;;;49
【解析】
12.;2;;1
;5;28;1
【解析】
13.;8;5.5;6
21;60;;25
【解析】
14.;0;;;
0.2;200;5;93
【解析】
15.(1)5.66;(2)2.25;(3)3.83
(4)0.25;(5)5.6;(6)6
(7)25;(8)
16.78;6.25;19
【解析】
(1)利用减法的性质,先计算(1.26+2.74)的和,再计算减法;
(2)=0.625,提取相同的小数0.625,利用乘法分配律简便计算;
(3)除以转换成乘36,利用乘法分配律简便计算。
5.78-1.26-2.74
=5.78-(1.26+2.74)
=5.78-4
=1.78
=
=
=
=6.25
=
=
=9+16-6
=19
17.7;10;1925;
7;3;
【解析】
(1)运用除法的性质进行简算即可;
(2)把3.2拆成4×0.8,然后运用乘法交换律和乘法结合律进行简算即可;
(3)运用乘法分配律进行计算即可;
(4)同级运算按照从左到右的运算顺序进行计算即可;
(5)运用加法交换律和减法的性质进行计算即可;
(6)先算除法,然后运用减法的性质进行计算即可。
=437÷(12.5×0.8)
=437÷10
=43.7
=4×0.8×2.5×1.25
=(4×2.5)×(0.8×1.25)
=10×1
=10
=
=
=1925
=
=
=7
=
=
=3
=
=
=
=
18.6;3000;
;5550
【解析】
(1)先同时计算除法和乘法,再算加法;
(2)根据乘法交换律、结合律简算;
(3)先算小括号里面的加法,再算中括号里面的减法,最好算括号外的除法;
(4)先把555×13根据积不变规律变成111×65,再根据乘法分配律简算。
(1)5.1÷0.17+2.6×6
=30+15.6
=45.6
(2)×125×27
=×27×125
=24×125
=3×8×125
=3×(8×125)
=3×1000
=3000
(3)
=[1-]÷
=÷
=
(4)555×13-111×15
=111×65-111×15
=111×(65-15)
=111×50
=5550
19.;6
16.8;12.6
【解析】
(1)先算小括号里面的加法,再算中括号里面的减法,最后算括号外面的除法;
(2)根据乘法分配律和加法结合律进行计算;
(3)根据乘法分配律进行计算;
(4)先算小括号里面的减法,再按照从左向右的顺序进行计算。
(1)[1-(+)]÷
=[1-]÷
=÷
=
(2)(+)×11+
=×11+×11+
=5++
=5+(+)
=5+1
=6
(3)1.68×13.5-1.68×3.5
=1.68×(13.5-3.5)
=1.68×10
=16.8
(4)29.4÷2.8×(3.5-2.3)
=29.4÷2.8×1.2
=10.5×1.2
=12.6
20.①;②7.5;③
【解析】
①交换和的位置,利用加法交换律和加法结合律简便计算;
②转化成小数0.75,75%转化成小数0.75,再利用乘法分配律简便计算;
③87拆解成(86+1),再利用乘法分配律简便计算。
①
=
=1+
=
②
=
=
=
=7.5
③
=
=
=
=
21.5;16;
【解析】
(1)把3.2拆解成0.4×8,再利用乘法交换律和乘法结合律简便计算;
(2)除以变成乘,最后一个变成×1,再利用乘法分配律简便计算;
(3)先计算小括号里的加法,再计算中括号里的乘法,最后计算中括号外的除法。
=
=
=
=5
=
=
=
=16
=
=
=
=
22.4;
62.5;333000
【解析】
,改写成进行简算;
,可先算小括号中的减法,再算中括号中的减法,最后算乘法;
,可利用乘法分配律进行简算;
,改写成333×3×222+333×334后进行简算。
=
=5-1
=4
=
=
=
=6.25×(2.8+7.2)
=6.25×10
=62.5
=333×3×222+333×334
=333×(3×222)+333×334
=333×(666+334)
=333×1000
=333000
23.75;5.55;
7.5;;
【解析】
(1)(2)按照四则混合运算的顺序计算;
(3)逆用减法的性质进行计算;
(4)把分数化成小数,再根据乘法分配律计算;
(5)把改写成再计算;
(6)先对括号里的分数进行通分,把小数0.6改写成分数,再计算。
(1)(1.5-1.5×0.6)÷0.8
=(1.5-0.9)÷0.8
=0.6÷0.8
=0.75
(2)73.2÷24+2.5
=3.05+2.5
=5.55
(3)
=
=
=
=
(4)
=
=
=3.75×2
=7.5
(5)
=
=
=
(6)
=
=
=
=
24.(1)25;(2)1;
(3);(4)20
【解析】
(1)先把百分数化成小数,再根据乘法分配律把式子转化为2.5×(4.36+3.64)+5,进行简算即可;
(2)根据运算顺序,先计算括号里的除法和括号外的乘法,最后计算括号外的除法;
(3)根据运算顺序,先计算括号里的加法,再计算括号外的除法,最后计算括号外的加法;
(4)根据乘法分配律,把式子转化为,进行简算即可。
(1)4.36×250%+2.5×3.64+5
=4.36×2.5+2.5×3.64+5
=2.5×(4.36+3.64)+5
=2.5×8+5
=20+5
=25
(2)9×÷(9÷)
=×÷(×)
=÷
=1
(3)
=
=
=
=
(4)
=
=
=
25.64;24.4;353.5
【解析】
(1)按照分数四则混合运算的顺序,先算加法,再算乘法,最后算除法;
(2)运用“带着符号搬家”的方法,把原式改写为19.92-9.92+14.4,再从左往右依次计算;
(3)把101分解成100+1,再运用乘法分配律简算。
=
=4÷
=64
=19.92-9.92+14.4
=10+14.4
=24.4
=(100+1)×3.5
=100×3.5+1×3.5
=350+3.5
=353.5
26.29;40
1.37;
【解析】
(1)运用乘法分配律进行简算;
(2)运用乘法分配律进行简算;
(3)运用减法性质进行简算;
(4)先算小括号里的减法,再算中括号里的减法,最后算括号外的乘法。
24×(+)
=24×+24×
=9+20
=29;
61×40%+38×+0.4
=(61+38+1)×40%
=100×40%
=40;
5.37-1.47-2.53
=5.37-(1.47+2.53)
=5.37-4
=1.37;
[1-(-)]×
=[1-]×
=×
=
27.;;
;
【解析】
(1)先计算分数除法,再计算分数加法;
(2)先计算小括号里面的加法,再计算中括号里面的减法,最后计算括号外面的除法;
(3)把3200化为(8×400),再利用乘法交换律和结合律简便计算;
(4)先把分数除法化为分数乘法,再把0.75化为,最后利用乘法分配律简便计算。
(1)
=
=
(2)
=
=
=
(3)
=
=
=
=
(4)
=
=
=
=
=
28.(1)65;(2)30.2;(3)380;
(4)37;(5);(6)
【解析】
(1)从左向右进行计算;
(2)先算小括号里的加法,再算括号外的除法;
(3)运用乘法分配律进行简算;
(4)运用乘法交换律进行简算;
(5)先算小括号里的减法,再算中括号里的乘法,最后算括号外的除法;
(6)把除以7化成乘,再运用乘法分配律进行简算。
(1)270-49-156
=221-156
=65
(2)(5.9+1.65)÷0.25
=7.55÷0.25
=30.2
(3)3.8×99+3.8
=3.8×(99+1)
=3.8×100
=380
(4)4×0.37×25
=4×25×0.37
=100×0.37
=37
(5)÷[×(-)]
=÷[×]
=÷
=
(6)÷7+×
=×+×
=(+)×
=1×
=
29.;;80;4
【解析】
(1)把15拆成14+1,然后运用乘法分配律进行计算即可;
(2)先算乘除法后算减法即可;
(3)先算乘法再算加法即可;
(4)先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的除法即可。
=(14+1)×
=14×+1×
=13+
=
=
=
=
=
=80
=
=
=4
30.;21;0.237
【解析】
(1)提取相同的分数,利用乘法分配律简便计算;
(2)交换3.2和7.22的位置,利用加法交换律和加法结合律简便计算;
(3)利用除法的性质,先计算8×1.25,再计算除法。
=
=
=
=
=11+10
=21
=
=2.37÷10
=0.237
31.(1)=;(2)=5
【解析】
(1)先化简方程,再根据等式的性质,方程两边同时除以即可;
(2)先根据比例的基本性质,把式子转化为,再根据等式的性质,方程两边同时除以即可。
(1)
解:
(2)
解:
32.①;②
【解析】
①方程两边同时乘,两边再同时乘;
②先把方程左边化简为,两边再同时除以0.7。
①
解:
②
解:
33.;;
【解析】
(1)根据等式的性质,方程两边同时乘,即可求解;
(2)根据等式的性质,方程两边同时乘,即可求解;
(3)先计算方程的左边,再根据等式的性质,方程两边同时除以0.8即可求解。
(1)
解:
(2)
解:
(3)x-20%x=440
解:80%x=440
0.8x=440
0.8x÷0.8=440÷0.8
34.;;
【解析】
(1)方程两边同时减去;
(2)方程两边同时加上12,两边再同时乘;
(3)先把方程左边化简为,两边再同时乘。
(1)
解:
(2)
解:
(3)
解:
35.(1)x=;(2)x=25;(3)x=1500
【解析】
(1)根据等式的性质,方程两边同时减去即可;
(2)根据等式的性质,方程两边同时加上4,再同时除以即可;
(3)先化简方程,把百分数转化成小数,再根据等式的性质,方程两边同时除以0.18即可。
(1)x+=2
解:x+-=2-
x=
(2)x-4=16
解:x-4+4=16+4
x=20
x÷=20÷
x=25
(3)(1-82%)x=270
解:0.18x=270
0.18x÷0.18=270÷0.18
x=1500
36.x=5;x=
【解析】
(1)利用等式的性质1,方程左右两边同时连续减去x和5,解出方程;
(2)先计算括号里减法,再利用等式的性质2,方程左右两边同时乘,解出方程;
解:2x+5-x-5=x+10-x-5
x=5
解:
x=
37.=22.4;=125.5
【解析】
用等式的性质解方程。
(1)先简化方程,然后方程两边同时除以,求出方程的解;
(2)把看作一个整体,把10%化成0.1,方程两边先同时除以0.1,再同时减去,求出方程的解。
(1)
解:
(2)
解:
38.x=2.5;x=16.8;x=18
【解析】
,先将左边进行合并,再根据等式的性质2解方程;
,先将小括号里的算出结果,再根据等式的性质2解方程;
,先将左边进行合并,再根据等式的性质2解方程。
解:
解:
解:
x=18
39.(1)x=40;(2)x=19.5;(3)x=
【解析】
(1)x-15%x=18
解:0.45x=18
x=18÷0.45
x=40
(2)(x-1.5)×=6
解:x-1.5=18
x=18+1.5
x=19.5
(3)40%x-=
解:0.4x=
x=÷0.4
x=
40.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此计算。
(1)
解:
(2)
解:
(3)
解:
41.;x=28;
【解析】
解:
解:
x=28
解:
42.;;
【解析】
解:
解:
解:
43.x=128;x=12;x=
【解析】
①可以把看成一个整体,应用等式的性质1,方程左右两边同时减去6,再应用等式性质2,方程左右两边同时除以,得到方程的解;
②逆用乘法分配律,百分数化为小数,将方程整理成0.8x=9.6,最后应用等式的性质2,方程左右两边同时除以0.8,得到方程的解;
③含有未知数的项作为减数,可应用减法中各部分的关系,将方程整理成,最后应用等式的性质2,将方程左右两边同时除以,得到方程的解。
解:
x-20%x=9.6
解:(1-0.2)x=9.6
0.8x=9.6
x=9.6÷0.8
x=12
解:
44.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此解答。
(1)
解:
(2)
解:
(3)
解:
45.;;
【解析】
(1)先两边同时乘,再两边同时除以;
(2)先将12.5%化成分数,左边化简后,两边同时除以;
(3)先两边同时减去,再两边同时除以0.5。
(1)
解:
(2)
解:
(3)
解:
46.A
解析:5cm2
【解析】
如下图所示,添加一条辅助线,左边阴影部分的面积等于A部分的面积,而A部分和另一块阴影组成一个梯形,则原来两块阴影部分的面积之和等于梯形的面积。梯形的面积=(上底+下底)×高÷2,据此代入数据计算。
(12-5+12)×5÷2
=19×5÷2
=47.5(cm2)
47.88cm2
【解析】
阴影部分的面积=梯形面积-半圆面积,根据梯形面积S=(a+b)h÷2,半圆面积S=πr2÷2,分别代入数据计算即可。
梯形的面积:
(4×2+16)×4÷2
=(8+16)×4÷2
=24×4÷2
=96÷2
=48(cm2)
半圆的面积:
3.14×42÷2
=3.14×16÷2
=50.24÷2
=25.12(cm2)
阴影部分的面积:
48-25.12=22.88(cm2)
48.84米;60平方米
【解析】
阴影部分的周长等于长方形的两条长加上一个圆的周长;通过割补,阴影部分可以看成是一个长方形,根据长方形的面积公式:计算面积即可。
阴影部分的周长:
(米
阴影部分的面积:
(平方米)
49.48平方厘米
【解析】
观察图形可得:阴影部分的面积长方形面积半圆的面积,长方形的长是12厘米,宽是厘米,圆的直径是12厘米,然后再根据长方形的面积公式,圆的面积公式进行解答。
12×(12÷2)-3.14×(12÷2)2÷2
=12×6-3.14×36÷2
=72-3.14×18
=72-56.52
=15.48(平方厘米)
50.C
解析:68cm
【解析】
通过观察图形可知,阴影部分的周长等于半径为12厘米的圆周长的加上直径为12厘米的圆周长的,再加上12厘米的线段;圆的周长公式C=2πr或C=πd,代入数据列式计算。
=
(cm)
51.12dm2
【解析】
由图可知这个组合图形是由等腰三角形和半圆组成,底、高和圆的直径都是4dm,根据三角形的面积=底×高÷2,半圆的面积=,代入数据,求出等腰三角形和半圆的面积,两个图形的面积相加即是这个组合图形的面积。
(4×4)÷2
=16÷2
=8(dm2)
4÷2=2(dm)
3.14×22÷2
=3.14×4÷2
=12.56÷2
=6.28(dm2)
6.28+8=14.28(dm2)
52.44平方厘米
【解析】
从图中可知,阴影部分的面积=正方形的面积-圆的面积;其中正方形的面积=边长×边长,圆的面积S=πr2,代入数据计算即可。
正方形面积:4×4=16(平方厘米)
圆的面积:
3.14×(4÷2)2
=3.14×4
=12.56(平方厘米)
阴影部分面积:16-12.56=3.44(平方厘米)
53.5cm2
【解析】
从图中可知,阴影部分的面积=圆的面积-正方形的面积;其中圆的面积用公式S=πr2求解;把正方形用一条对角线分成两个完全一样的三角形,三角形的底等于圆的直径,高等于圆的半径,根据三角形的面积=底×高÷2,求出一个三角形的面积,再乘2,就是正方形的面积。
圆的面积:
3.14×(10÷2)2
=3.14×25
=78.5(cm2)
正方形的面积:
10×(10÷2)÷2×2
=10×5÷2×2
=50÷2×2
=50(cm2)
阴影部分的面积:
78.5-50=28.5(cm2)
54.5平方米
【解析】
由图可知,小圆的直径为大圆的半径,阴影部分的面积=大半圆的面积-空白部分小圆的面积,据此解答。
3.14×(20÷2)2÷2-3.14×(20÷2÷2)2
=3.14×102÷2-3.14×52
=3.14×100÷2-3.14×25
=3.14×(100÷2-25)
=3.14×(50-25)
=3.14×25
=78.5(平方米)
55.72平方厘米
【解析】
观察图形可知,阴影部分的面积=梯形的面积-半圆的面积。梯形的面积=(上底+下底)×高÷2,半圆的面积=πr2÷2,据此代入数据计算。
(4+6)×2÷2-22×3.14÷2
=10-6.28
=3.72(平方厘米)
56.87cm2
【解析】
用梯形的面积乘2再除以上下底之和,求出梯形的高。看图,梯形的高和空白部分半圆的直径相等,所以用梯形的高除以2,可以求出半圆的半径,从而结合圆的面积公式,求出半圆的面积。用梯形的面积,减去半圆的面积,求出阴影部分的面积。
51×2÷(5+12)
=102÷17
=6(cm)
6÷2=3(cm)
3.14×32÷2=14.13(cm2)
51-14.13=36.87(cm2)
所以,阴影部分的面积是36.87cm2。
57.12厘米
【解析】
观察图形发现,阴影部分的周长等于半径是3厘米的圆周长的一半+半径是5厘米的圆周长的一半+一条直径(5×2)厘米。
3.14×3×2÷2+3.14×5×2÷2+5×2
=9.42+15.7+10
=35.12(厘米)
58.86cm2
【解析】
通过观察图形可知,阴影部分的面积=梯形的面积-等腰直角三角形的面积-半径为2cm的圆的面积;梯形面积公式S=(a+b)×h÷2,三角形的面积公式:S=ah÷2,圆的面积公式:S=πr2,把数据分别代入公式解答。
(2+4)×(4+2)÷2
=6×6÷2
=36÷2
=18(cm2)
4×4÷2
=16÷2
=8(cm2)
3.14×22×
=3.14×4×
=3.14(cm2)
18-8-3.14
=10-3.14
=6.86(cm2)
59.74cm2
【解析】
先利用梯形的面积公式:(上底+下底)×高÷2,计算出梯形的面积,再利用圆的面积公式:,再乘,计算出个圆的面积,用梯形的面积减去个圆的面积,即是图中阴影部分的面积。
(6+12)×6÷2-3.14×6×6÷4
=18×6÷2-18.84×6÷4
=54-28.26
=25.74(cm2)
60.86平方厘米
【解析】
阴影部分的面积=梯形面积-扇形面积,据此列式计算。
(2+4)×2÷2-3.14×2²÷4
=6×2÷2-3.14
=6-3.14
=2.86(平方厘米)
展开阅读全文