1、摘 要起重机械用来对物料作起重、运输、装卸和安装等作业的机械设备,它可以减轻体力劳动、提高劳动生产率和在生产过程中进行某些特殊的工艺操作,实现机械化和自动化。本设计通过对桥式起重机的大车运行机构部分和回转小车运行机构的总体设计计算,以及电动机、联轴器、缓冲器、制动器的选用;运行机构减速器的设计计算和零件的校核计算及结构设计,完成了桥式起重机的大车运行机构和回转小车运行机构机械部分的设计。通过本次设计,完成了一台15+15t起重量、桥跨度为22.5米的设计要求,并且整个传动过程比较平稳,且大车运行机构和回转小车运行机构结构简单,拆装方便,维修容易,价格低廉。关键词: 桥式起重机; 大车运行机构;
2、 回转小车运行机构; 减速器ABSTRACTCrane is a kind of mechanical equipments used for lifting, moving, loading/unloading, and installing. It can lower the manual workload and upgrade productivity. It can be operated in some special environment, too, and work with high automatic level. Crane can operate whole obje
3、cts, disintegrated materials, or liquid substances. The crane loads vary from time to time, so it is a periodic operational machine. A crane contains three major parts, mechanic components, a metal structure, and electrical devices. A cranes mechanical movements are multi-actions, such as raising, r
4、unning, and rotating.This paper is main deal with mechanical design for the moving mainframe of bridge crane and Rotating Frame of Bridge Crane, including all design calculation selection of electrical motors, clutch, buffer, and brakes, the design and calculation of the reducer, calibration and ver
5、ification of the calculation for the parts, and structure designs. Through a series of work, the design is satisfied with the functional requirments, 15+15 ton lifting power and 22.5 metre bridge span. The course of drive is quite smooth. The mechanical structure of the mainframe is simple, easy to
6、install/disassemble, and maintain. And it has low cost.Key words: Bridge crane; The moving mainframe; The rotating frame; The reducer目 录1 绪论11.1 起重机的基本组成11.2 起重机运行机构的基本构造及其特点11.3 起重机运行机构的驱动方式21.4 起重机设计参数52 大车运行机构计算52.1 确定传动方案52.2 选择车轮与轨道并验算其强度62.3 运行阻力计算72.4 选电动机82.5 验算电动机发热条件92.6 选择减速器92.7 验算运行速度和实
7、际所需功率102.8 启动时间验算102.9 起动工况下减速器功率校核122.10 起动不打滑验算122.10.1 二台电动机空载时同时起动122.10.2 事故状态132.11 选择制动器152.12 联轴器选择162.12.1 运行机构高速轴的扭矩计算162.12.2 低速轴的扭矩计算172.13 浮动轴的验算172.13.1 疲劳强度验算172.13.2 静强度验算183 回转小车运行机构计算193.1 小车运行机构计算193.2 选择车轮与轨道并验算其强度193.2.1 车轮踏面疲劳计算203.2.2 线接触局部挤压强度验算213.3 运行阻力计算213.4 选电动机223.5 电动机
8、发热条件验算233.6 选择减速器233.7 验算运行速度和实际所需功率233.8 启动时间验算243.9 起动工况下校核减速器功率253.10 验算起动不打滑条件263.11 选择制动器273.12 高速轴联轴器及制动轮选择283.12.1 高速轴联轴器计算扭矩283.12.2 高速轴制动轮选择293.13 低速轴联轴器选择293.14 低速浮动轴强度验算303.14.1 疲劳验算303.14.2 强度验算314 结束语31参考文献33致 谢34351 绪论1.1 起重机的基本组成1桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行
9、,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。桥式起重机广泛地应用在室内外仓库、厂房、码头和露天贮料场等处。桥式起重机可分为普通桥式起重机、简易粱桥式起重机和冶金专用桥式起重机三种13。 普通桥式起重机一般由起重小车、桥架运行机构、桥架金属结构组成。起重小车又由起升机构、小车运行机构和小车架三部分组成。起重机运行机构一般只用四个主动和从动车轮,如果起重量很大,常用增加车轮的办法来降低轮压。当车轮超过四个时,必须采用铰接均衡车架装置,使起重机的载荷均匀地分布在各车轮上。桥架的金属结构由主梁和端梁组成,分为单主梁桥架和双梁桥
10、架两类。单主梁桥架由单根主梁和位于跨度两边的端梁组成,双梁桥架由两根主梁和端梁组成。主梁与端梁刚性连接,端梁两端装有车轮,用以支承桥架在高架上运行。主梁上焊有轨道,供起重小车运行。桥架主梁的结构类型较多比较典型的有箱形结构、四桁架结构和空腹桁架结构。起升机构包括电动机、制动器、减速器、卷筒和滑轮组。电动机通过减速器,带动卷筒转动,使钢丝绳绕上卷筒或从卷筒放下,以升降重物。起重机运行机构的基本构造及其特点大车运行机构一般由运行支承装置(包括均衡梁,车台架,传动车轮组等)和运行驱动装置(包括电动机、联轴器 制动器、减速器等)以及运行安全装置(包括夹轨器、顶轨器、防爬装置、锚定装置和缓冲器等)所组成
11、。大车运行机构的设计主要依据整机的结构型式、机构工作级别、运行速度、整机的质量以及码头、货场等基础的承载能力和支承轨道型式等。一般以车轮的许用轮压和轨道型式作为设计的基本条件之一。在保证均衡粱、台车架、车轮和轴等主要受力构件安全可靠的条件下,必须保证各传动部件能正常工作。为了避免车轮在运行过程中的啃轨现象,设计中必须保证多轮台车组具有自位适应的能力,即使在支承轨道具有少量下沉、微量弯曲等情况下,起重机也要能正常行驶。为此对均衡粱和台车组应设计自位回转装置。比较通用的结构形式有以下两种:即台车相对于均衡粱自位回转和均衡粱相对于门腿自位回转。作为安全装置的夹轨器、顶轨器、防爬器、锚定装置和缓冲器等
12、,主要是为了防止起重机在作业过程中滑行和起重机受大风影响而发生无控自行,引起机与机相撞重大事故而设置的,通常都与运行机构一同考虑。小车的传动方式有两种,即减速器位于小车主动轮中间或减速器位于小车主动轮一侧。减速器位于小车主动轮中间的小车传动方式,使小车减速器输出轴及两侧传动轴所承受的扭矩比较均匀。减速器位于小车主动轮一侧的传动方式,安装和维修比较方便,但起车时小车车体有左右扭摆现象。起重机运行机构的驱动方式2起重机运行机构的驱动方式可分为两大类:一类为集中驱动,即用一台电动机带动长传动轴驱动两边的主动车轮;另一类为分别驱动、即两边的主动车轮各用一台电动机驱动。中、小型桥式起重机较多采用制动器、
13、减速器和电动机组合成一体的“三合一”驱动方式,大起重量的普通桥式起重机为便于安装和调整,驱动装置常采用万向联轴器。起重机运行机构一般只用四个主动和从动车轮,如果起重量很大,常用增加车轮的办法来降低轮压。当车轮超过四个时,必须采用铰接均衡车架装置,使起重机的载荷均匀地分布在各车轮上。 而对于在磁盘环形桥式起重机运行机构设计中,起重量为15t+15t,所以只用四个主动和从动车轮起重机的运行机构分为有轨运行和无轨运行两类。桥式起重机的运行机构基本上都是用轨行式的。因为起重机在专门铺设的轨道上运行时,具有负荷能力大,运行阻力小,可以采用电力驱动等特点。轨行式运行机构主要用于水平运移物品,调整起重机的工
14、作位置以及将作用在起重机上的载荷传递给基础建筑。结合本次设计的要求,在毕业设计中将使用轨行式的运行机构。对于大车运行机构,其设计的基本要求8为:a.机构要紧凑,重量要轻;b.和桥架配台要合适;c.尽量减轻主粱的扭转载荷,不影响桥架的刚度;d维护检修方便,机构布置合理。使司机从驾驶室上、下走台方便。便于装拆零件和操作。大车运行机构的典型形式与选择3。第一种为集中驱动,即由一台电动机通过传动轴驱动两边车轮转动,称为集中驱动,如图1.1。图1.1 集中驱动布置简图(a)低速轴驱动;(b)高速轴驱动;(c)中速轴驱动根据传动轴的转速可以分为低速轴驱动(如图1.1 a),高速轴驱动(如图1.1b),中速
15、轴驱动(图1.1c)三种。采用集中驱动对走台的刚性要求高。低速轴驱动可靠,由于低速轴传递的扭矩大,轴径粗,自重也大。高速轴驱动的传递轴细而轻,但振动较大,安装精度要求较高,需要两套减速器成本也高。中速轴驱动机构复杂,分组性差。集中驱动的大车运行机构主要用于早期生产的一些桥式起重机。由于集中驱动的驱动零部件多,自重大,安装复杂,成本高,维修不便。分别驱动就是第二中驱动方式,这种驱动方式两边车轮分别由两套独力的无机械联系的驱动装置驱动如图1.2。省去了中间传动轴,自重轻,部件分组性好,安装和维修方便。在起重机大车运行机构上广泛采用,故在本次设计中使用分别驱动的形式。 图1.2 分别驱动布置简图桥式
16、起重机大车运行机构装在走台上,采用带浮动轴的分别驱动装置4(如图1.3)。使安装和维修更加方便。大吨位桥式起重机的分别驱动一般在低速轴端增设浮动轴,如图1.4。图1.3 桥式起重机分别驱动布置简图 (a) (b) 图1.4 低速轴带浮动轴布置简图浮动轴两端可用齿轮联轴器或采用万向联轴器。其中卧式减速器也可改用立式减速器,连同电动机,制动器固定于焊接在主梁上的支撑上。这种方案除安装检修稍差外,它的整体结构紧凑,对走台刚度要求不高,使用效果良好。在中小起重机的桥式起重机中,采用 “三合一”传动装置的传动机构分别驱动方案已日益广泛,如图1.5,减速器可直接套装在车轮轴上。这种形式结构紧凑,重量轻,组
17、装性好,机构安装与走台无关,不受走台变形的影响,是一种有发展前途的驱动方式。 图1.5 “三合一”大车运行机构1.2 起重机设计参数起重量15t+15t;起升高度5m;跨度22.5m;起升速度13.6m/min;旋转速度4r/min;大车运行速度88m/min;小车运行速度43m/min;工作级别A6。起重机运行机构的驱动方式2 大车运行机构计算2.1 确定传动方案跨度22.5m为中等跨度,为减轻总量,决定采用如图2.1所示方案。 图2.1 传动方案2.2 选择车轮与轨道并验算其强度 按图2.2所示的质量分布,计算大车车轮的最大轮压和最小轮压。图2.2 轮压计算图满载时,最大轮压: (2.1)
18、空载时,最小轮压: (2.2)车轮踏面疲劳计算载荷: (2.3)车轮材料:采用ZG340-640(调质),,由附表18选择车轮直径Dc=700mm,由5表5-1查得轨道型号为Qu70(起重机专用轨道)。按车轮与轨道为点接触和线接触两种情况来验算车轮的接触强度。点接触局部挤压强度验算: (2.4)式中:k2许用点接触应力常数(N/mm2),由12表8-1-97查得,取k2=0.181;R曲率半径,由车轮和轨道两者曲率半径中取最大植,由附表21取Qu70的轨道曲率半径为R=400mm;m由轨顶和车轮的曲率半径之比(r/R)所确定的系数,由12表8-1-100查得m=0.405;c1转速系数,由12
19、表8-1-98,车轮转速时,c1=0.99;c2工作级别系数,由12表8-1-99查得,当M6级时c2=0.9; ,故验算通过。线接触局部挤压强度验算:式中:k1许用线接触应力常数(N/mm2),由12表8-1-97查得,取k1=6.6;l车轮与轨道的有效接触长度,而Qu70的l=70mm;Dc车轮直径(mm);c1;c2同前; ,故验算通过。2.3 运行阻力计算摩擦总阻力矩: 由附表查得Dc=700mm车轮的轴承型号为7524,轴承内外径的平均植为:, 由5表7-1表7-3查得滚动摩擦系数k=0.0006,轴承摩擦系数=0.02,附加阻力系数=1.5,代人上式得满载时运行阻力矩: (2.5)
20、运行摩擦阻力: (2.6)当无载时: (2.7) (2.8)2.4 选电动机 按运行静阻力、运行速度及机构效率计算机构运行的静功率,根据运行机构静功率和接电持续率初选电动机。然后校验电动机过载和发热,并控制加速度值。电动机静功率: (2.9)式中:满载时静阻力;=0.9机构传动效率;m=2驱动电动机台数。初选电动机功率: (2.10)式中:kd电动机功率增大系数,由5中表7-6查得,kd=2;由附表30选用电动机YZR2-22-6: 电机质量Gd=115kg。2.5 验算电动机发热条件 等效功率: (2.11)式中:k25工作级别系数,由5表6-4当JC=25%时,k25=0.75;查5图6-
21、6, 按期中集的工作场所得tq/tg=0.25,查得=1.3由此可知,故选初电动机发热条件通过。2.6 选择减速器11 车轮转速: ( 2.12)机构传动比: (2.13)查附表35选用ZQ-500IV减速器: (当输入转速为1000r/min时),可见。2.7 验算运行速度和实际所需功率 实际运行速度: (2.14)误差: (2.15)实际所需电动机静功率: (2.16)故所选的电动机和减速器合适。2.8 启动时间验算 启动时间: (2.17) 式中:n1=930r/min;m=2(驱动电动机台数);时电动机额定扭矩满载运行时的静阻力矩: (2.18)空载运行时的静阻力矩: (2.19) 初
22、步估算制动轮和联轴器的飞轮矩:机构总飞轮矩:满载起动时间: (2.20)空载起动时间: (2.21) 起动时间在允许范围(810s)之内,故合适。2.9 起动工况下减速器功率校核起动工况下减速器传递功率:式中: (2.22)运行机构中同一级传动减速器的个数,=2;因此, (2.23)所选用减速器的NJC25%=20.5kWNd,所以合适。2.10 起动不打滑验算打滑或使主动轮空转动,起重机运行不起来;或主动轮边走边滑,达不到额定速度。这样,不仅影响起重机正常工作,造成车轮的磨损,还会出现制动时溜车,引发事故。运行机构正常工作的条件是,运行机构启动或制动时,主动轮不应打滑,即主动轮与轨道之间驱动
23、力小于它们之间的最大摩擦力(也称附着力或粘着力)。由于起重机是在室内使用,故坡度阻力及风阻力均不予考虑。以下按三种工况进行验算:2.10.1 二台电动机空载时同时起动 (2.24)式中: P1为主动轮压之和;P2为从动轮压之和;由5得f=0.2f室内工作的粘着系数,故nnz,故两台电动机空载起动不会打滑。2.10.2 事故状态当只有一个驱动装置工作,而无载小车位于工作中的驱动装置这一边时,则: (2.25)式中:P1工作的主动轮压;P2工作的非主动轮压之和;一台电动机工作时的空载起动时间: nnz,故不会打滑。当只有一个驱动装置工作,而无载小车远离工作中的驱动装置这一边时,则:;与第二中工况相
24、同 nnz,故也不会打滑。2.11 选择制动器选择制动器: 由5取大车运行机构制动时间tz,按空载计算制动力矩:即Q=0代入的()式; 2.26)式中:M=2制动器台数,两套驱动装置工作。 由附表15选用两台YWZ5315/50制动器,其制动转矩,为了避免打滑,使用时需将制动力矩调至以下。考虑制动时间,在验算起动不打滑条件时已知是足够安全的,故制动不打滑验算从略。2.12 联轴器选择根据机构传动效率,每套机构的高速轴和抵速轴都采用浮动轴。2.12.1 运行机构高速轴的扭矩计算 (2.27)式中:MI联轴器的等效力矩; (2.28)等效系数,见表2-6,取=2; (2.29)由附表31查电动机Y
25、ZR2-22-6两端伸出轴各为圆柱形d1=4mm,l=110mm。由附表34查ZQ-500减速器高速轴端为圆锥形d=50mm,l=85mm。故在靠近电动机端从附表44中选两个带制动轮的半齿联轴器S251(靠近电动机一侧为圆柱形孔,浮动轴端d=50mm);Ml=3150 ;(GD2)zl=1.8 ;质量G=38.5kg。在靠减速器端,由附表41选两个鼓型齿式联轴器(靠减速器端为圆锥形,浮动轴直径d=50mm); 其Ml=3150 ;(GD2) l=0.035;质量G=6.2kg。高速轴上转动零件的飞轮矩之和为:(GD2)zl+(GD2) l=1.8+0.035=1.835与原估计基本相符,故有关
26、计算则不需要重复。2.12.2 低速轴的扭矩计算 (2.30)由附表34查得ZQ-500减速器低速轴端为圆柱形,d=50mm,l=85mm;由附表19查得,Dc=700mm的主动车轮的伸出端为圆柱形,d=90mm,l=125mm故从附表42中选4个联轴器:(靠近减速器端)(靠车轮端)2.13 浮动轴的验算2.13.1 疲劳强度验算低速浮动轴的等效扭矩: (2.31)式中:等效系数;由表2-6得由上节已取浮动轴端直径为d=75mm,故其扭矩应力为: (2.32)由于浮动载荷变化为对称循环(因为浮动轴在运行过程中正反转的扭矩相同),所以许用扭矩应力为: (2.33)式中:材料为45号钢,取,所以
27、(2.34) (2.35) k考虑零件几何形状,表面状况的应力集中系数。由表2-18查得安全系数nI=1.4,,故疲劳强度验算通过。2.13.2 静强度验算计算静强度扭矩: (2.36)式中:为动力系数,查表2-5得=2.5,扭矩应力: (2.37)许用扭转剪应力: (2.38),故静强度验算通过。高速轴所受扭矩比低速轴小(二者相差倍),但强度是足够的,故此处高速轴的强度验算从略。3 回转小车运行机构计算3.1 小车运行机构计算确定机构传动方案,经比较后确定采用如图3.1所示的传动方案。图3.1 回转小车传动方案3.2 选择车轮与轨道并验算其强度小车质量估计取Gxc=7000kg,假定轮压均布
28、,车轮最大轮压: (3.1)车轮最小轮压: (3.2)初选车轮:由附表17可知:由回转速度为4r/min,Q/Gxc =30000/7000=4.286,工作级别为重级时,车轮直径Dc=500mm,轨道型号为P38,它的许用轮压为14.15t。故初步选定车轮直径Dc=500mm。强度验算:按车轮与轨道为线接触及点接触两种情况验算车轮接触强度:3.2.1 车轮踏面疲劳计算 (3.3)车轮材料:采用ZG340-640(调质),线接触局部挤压强度: (3.4)式中:k2许用点接触应力常数(N/mm2),由5表5-2查得,取k2=0.132;R曲率半径,由车轮和轨道两者曲率半径中取最大植,车轮半径为R
29、=500/2=250mm,轨道曲率半径r2=300mm(附表22),故取R=300mm。m由r/R=250/300-0.833比值所确定的系数,由12表8-1-100查得m=0.415;c1转速系数,由12表8-1-98,车轮转速时,c1=1.17;c2工作级别系数,由12表8-1-99查得,当M6级时c2=0.9; ,故验算通过。3.2.2 线接触局部挤压强度验算7 (3.5)式中:k1许用线接触应力常数(N/mm2),由12表8-1-97查得,取k1=6.0;l车轮与轨道的有效接触长度,而P38的l=35.5mm;Dc车轮直径(mm);c1;c2同前; ,故验算通过。根据以上计算结果,选定
30、直径Dc=500mm的双轮缘车轮,标记为:车轮SYL-500。3.3 运行阻力计算 摩擦阻力矩: 查附表19,由Dc=500mm车轮组的轴承型号为7524,据此选Dc=500mm,车轮组轴承为7524,轴承内径和外径的平均值d=(120+180)/2=150mm。由5表7-1表7-3查得滚动摩擦系数k=0.0005,轴承摩擦系数=0.02,附加阻力系数=2.0,代人上式得满载时运行阻力矩: (3.6)运行摩擦阻力: (3.7)当无载时, (3.8) (3.9)3.4 选电动机 电动机静功率: (3.10)式中:满载时静阻力;=0.9机构传动效率;m=1驱动电动机台数。初选电动机功率: (3.1
31、1)式中:kd电动机功率增大系数,由5中表7-6查得,kd=1.2;由附表30选用电动机YZR2-31-8: 电机质量Gd=155kg。3.5 电动机发热条件验算 等效功率: (3.12)式中:k25工作级别系数,由5表6-4当JC=25%时,k25=1.0;查5图6-6, 按期重级的工作场所由表6-5得tq/tg=0.2,查得=1.12由此可知,故选初电动机发热条件通过。3.6 选择减速器10 车轮转速: (3.13)机构传动比: (3.14)查附表40选用ZSC-750IV减速器: (当输入转速为1000r/min时),可见。3.7 验算运行速度和实际所需功率 实际运行速度: (3.15)
32、误差: (3.16)满足不大于的误差范围。实际所需电动机等效功率: (3.17)故所选的电动机和减速器均合适。3.8 启动时间验算 启动时间: (3.18)式中:n1=695r/min;m=1(驱动电动机台数);时电动机额定扭矩满载运行时折算到电动机轴上的运行静阻力矩: (3.19)空载运行时折算到电动机轴上的运行静阻力矩: (3.20)初步估算制动轮和联轴器的飞轮矩:机构总飞轮矩:满载起动时间: (3.21)空载起动时间: (3.22) 由5表7-6,当vc=37.68时tq推荐值为5.3s,故所选电动机能满足快速起动要求。3.9 起动工况下校核减速器功率起动工况下减速器传递功率: (3.2
33、3)式中: 运行机构中同一级传动减速器的个数,=1;因此, (3.24)所选用减速器的NJC25%Nd。故合适。3.10 验算起动不打滑条件打滑或使主动轮空转动,起重机运行不起来;或主动轮边走边滑,达不到额定速度。这样,不仅影响起重机正常工作,造成车轮的磨损,还会出现制动时溜车,引发事故。运行机构正常工作的条件是,运行机构启动或制动时,主动轮不应打滑,即主动轮与轨道之间驱动力小于它们之间的最大摩擦力9(也称附着力或粘着力)。由于起重机是在室内使用,故坡度阻力及风阻力均不予考虑。以下按空载起动时进行验算: (3.25)式中: P1主动轮压之和;P2从动轮压之和;由5得f=0.2f室内工作的粘着系
34、数,nz=1.051.2 nz防止打滑安全系数。故没有超过nz的范围,故不会打滑。3.11 选择制动器选择制动器 由5查得,对于小车运行机构制动时间,取=3s按空载计算制动力矩,即Q=0代入的()式; (3.26)式中:M=1制动器台数,一套驱动装置工作。 由附表15选用两台YWZ5200/23制动器,其制动转矩,为了避免打滑,使用时需将制动力矩调至以下。考虑制动时间,在验算起动不打滑条件时已知是足够安全的,故制动不打滑验算从略。3.12 高速轴联轴器及制动轮选择3.12.1 高速轴联轴器计算扭矩 (3.27)式中: (3.28)N联轴器的安全系数,运行机构n=1.35;机构刚性动载系数,=1.22.0,取=1.8。由附表31查电动机JZR2-31-8两端伸出轴各为圆柱形d=50mm,l=110mm。由附表34查ZSC-750减速器高速轴端为圆锥形d1=50mm,故从附表41选GICL鼓形齿式联轴器,主动端为A型键槽,d1=50mm,l=110mm,从动端为A