资源描述
GIO白皮书白皮书AI使能工业创新使能工业创新2024年9月来自“创新厨房”的问候AI甜点甜点制造业的创新开胃应用AI在制造业的应用由人类和AI厨师组成的混合团队提供的意想不到的食谱编辑和关键作者Jrgen Grotepass博士教授、Christopher Ganz博士等人前言前言本用例选集的标题是“来自厨房的问候”制造业的创新开胃应用。我们设计的封面图片既包含了制造业中以人为基础的创新,也包含了尖端AI使能的创新,体现了信息比特和物理齿轮的融合。两位厨师拥有不同的能力和优势,象征着他们所走的不同道路。可以把彭罗斯阶梯视为两位厨师的“云服务”,预示着他们所走的不同道路终将相遇。在汇合点,创新灯泡被点亮。流动着的蓝色和黄色的能量让灯泡在菜肴上方闪耀着绿色的光芒。当人类和AI团队开始合作创新,在数据空间创造价值时,我们可能会大吃一惊。制造业中AI使能的创新选集是GIO圆桌会议讨论的成果,也是作者在为跨国公司工作并活跃于各个行业组织的过程中,开发和部署跨行业、跨地域的工业4.0解决方案所形成的跨文化经验的结晶。创新就是以不同的方式处理事情,找到新的做事方法。创新就是要打破传统思维,接受新的想法,即使这些想法看起来不合常规或具有风险。这种创新方法要求我们勇于承担风险,拥抱惊讶,因为往往正是通过拥抱意外,我们才能找到最重要的突破和进步。创新还需要一定程度的适应性和灵活性,因为我们必须能够在事情没有按计划进行时调整方法。这可能具有挑战性,因为它要求我们放弃先入为主的观念,对新想法和新观点持开放态度。不过,抱着这种心态,我们就能接触到新的机会和潜在的解决方案,而这些机会和解决方案可能是我们从未考虑过的。这本关于创新开胃应用的手册讲述了如何接受解决方案,即学会预料意外和应对惊讶。“创新开胃应用”章节列出的创新故事均以引文开头,每段引文都来自于历史、哲学和科学领域的思想领袖,或节选自对作者产生影响的艺术作品。这种在编写创新故事时从不同视角出发的设计是一种思维转换的实践,打破了传统的解决问题的方式。随着数字化使能行业转型,导致OT、IT和电信行业的融合,这样的实践变得越来越重要。不同的问题解决方式、不同的标准、痛点和KPI可能会在多个利益相关方的合作中导致意见冲突。这就需要进行对话,使解决方案提供商、集成商和最终用户/运营商这三个关键角色之间的互动成为创新成功的使能器。目录目录引言引言预料意外预料意外在创新中与在创新中与AI合作合作创新开胃应用创新开胃应用第一道菜第一道菜设计和工程设计和工程一块又一块石头#生成式设计未来并非命运的安排#产品的二氧化碳跟踪孙子兵法中的战术#5G使能价值创造金锤定律#云机器人眼见为实?.#光学检测这是超感观感知吗?#具备视觉能力的未来网络主菜主菜运营运营用我朋友的一点帮助#制造即服务钟声为谁而鸣#流程中的质量监控灵魂之树#联邦学习未来已来#数据空间中的价值创造我们三人何时再见#动态预测性风险管理根据其自身规律#自主工厂甜点甜点维护维护哪颗种子会长成?#预测性维护预测的目标#面向铸造厂的规范性AI三元组之美#协同状态监控六小时砍倒一棵树#基于AI的服务生态所有菜肴的新调料所有菜肴的新调料#生成式生成式AI展望展望13589121518202326273134404346495053586265681引言引言本手册总结了创新食谱,其中有些是“老式”AI,例如机器学习、神经网络(NN),有些则是新发展的AI,如基于模型的生成式人工智能,为开胃应用增添了风味。人类和AI能力的融合将设计出新的产品、流程甚至制造方式。正如我们从2011年诺贝尔经济学奖得主丹尼尔 卡尼曼那里了解到的那样,人类的决策过程很容易出错1。他的主要论点是产生决策的是两种思维模式:“系统1”是快速的、本能的、感性的和有偏见的,而“系统2”则是缓慢的、理性的、耗费精力的和基于统计的。大多数时候,我们以为自己是根据“系统2”开展的行动,但事实上,我们仍然是根据“系统1”开展行动。由于创新需要应对意外情况,局限于“系统1”的思维模式让作者想起安托万 德 圣埃克絮佩里的著作战争飞行员(1942年)中的一句话:“Dans ma civilisation,celui qui diffre de moi,loin de me lser,menrichit”(在我的文明中,与我不同的人非但不会伤害我,反而会丰富我)。他认为不同的观点令人充实。有时,最成功的创新是那些通过协作、合作以及愿意倾听和学习他人(如今也包括AI系统)意见而形成的想法。从这个意义上说,这句话可以被视为一则提醒,提醒我们以开放的心态、学习的意愿来对待创新,并专注于找到让每个人都受益的解决方案。基于AI的决策依赖于数据,而且在大多数情况下,依赖于最好是经过人类专家验证的已训练模型。随着复杂性的增加,AI可能会提出人类未曾想到的解决方案。从这个意义上说,如今的AI是“系统2”的自动助手。因此,我们发现,在寻找新的解决方案时,AI和人类行为方组成的混合团队将是最好的创新者。考虑到生成式AI,我们认为一种新型创新文化正在不断发展。与任何跨文化经历一样,我们需要文化学习和沟通技能来应对陌生和意外情况,从而将惊讶转化为接受。惊讶是六种基本且普遍的情绪之一,这些情绪在所有文化中都是一样的(PaulEkman)。人工智能系统的未来设计需要预见学习循环,以应对人类的惊讶,并在需要时提供所用数据和模型的背景信息,因此双方都需要学习。本书旨在作为跨文化的学习演练,也是一项仍在进行中的有关处理创新及人工智能支持创新的工作。本书还旨在邀请所有对创新感兴趣的读者和初创公司作为共同作者,与日益壮大的AI社区分享他们的解决方案和想法。从长远来看,这将有助于开发和部署从设计上保证遵循用户意图的AI系统。*1.Kahneman,D.(2011):快思慢想,企鹅出版社,第496页等,ISBN 978-01410335702由于AI尚处于早期阶段,现在正是引导其发展、“教育”其能力以确保实现我们的意图的时候。彭罗斯阶梯上的二进制代码是作者发出的“机器可读”信息,旨在描述这个混合团队踏上的旅程的愿景和使命。如果您现在就想知道这段信息的含义,您可以获得生成式AI工具的翻译支持,以节省时间。但是,随着时间的推移在您消化我们在后续章节中介绍的创新开胃应用时您就会知道它的含义,也会在本书的展望章节看到相关摘要。3预料意外预料意外在创新中与在创新中与AI合作合作创新是指引入能为客户创造价值的新事物(例如产品、服务、流程)。创新可能涉及新想法的形成、新技术(例如AI)的使用,或新商业模式的实施。创新的关键在于,在工业解决方案中采用创新时,必须为客户创造价值。最近,新闻报道了许多创新的AI解决方案和AI用例,但这些方案必须在客户侧体现价值,而不是体现在使能工具或流程(AI)上。在工业流程创新中,常见的方法是在当前未使用AI的解决方案的背景下描述问题或用例。这些解决方案通常是为人类操作量身定制的。引入AI最明显的期望和方法往往是取代人类的劳动并与AI互动。但是,人类的局限性不是AI的局限性,AI的局限性也不是人类的局限性。因此,这种方法是不充分的。相反,应将用例与人类的局限性解耦或进行抽象,并考虑采用新的方法,发挥AI的优势。这种基于AI的解决方案应结合人类的优势,创建一个利用AI和人类优势的系统。但是,人类的优势最好由人类来执行,而不是由机器进行不完美的模仿。由于任何AI方法都需要大量的数据集,而这些数据集必须是正确、一致、有标签且完整的,因此以下局限性必须由人类智能来弥补:AI系统无法检测因果关系,但很擅长发现相关性。AI以现有数据为基础,无法投射到没有数据的领域(模型也是如此)。解决方案反映了训练数据集的所有缺点(偏见等)。另一方面,人类智能建立在心智模型上,而心智模型是在较少的数据基础上训练出来的,可以用于外推。在创新中与AI合作可以带来很多好处,因为它可以让组织快速、准确地处理和分析大量数据。不过,在与AI合作时,一定要预料意外,因为AI有时会产生意想不到的结果,或以人类可能无法预料的方式行事。与AI合作的关键挑战之一是,通常很难完全理解AI是如何得出结论或做出决定的。在处理基于大量数据训练出来的复杂机器学习算法时,情况尤其如此。虽然这些算法在发现规律和进行预测时可能非常有效,但它们可能并不总是能够解释自己的推理,或清楚地说明它们是如何得出特定结果的。这种缺乏透明度的情况可能会导致意想不到的结果,使组织难以预测和消减潜在的风险或挑战。例如,AI系统可能会做出不符合组织价值观或目标的决定,或者可能产生与人类期望不一致的结果。4为了应对这一挑战,组织需要为其AI项目制定明确的目标和期望,并设立健全的流程,以确保所使用的AI系统符合企业的价值观和目标。这可能包括对AI系统进行定期审查和审计,以确保其按照意图运行,以及进行持续的训练和开发,以确保其保持更新和准确。对于AI系统的供应商来说,这可能包括对出售给有其他价值观或数据使用限制的其他国家的机器、系统或自动化解决方案中包含的AI系统进行升级。并非所有AI都智能尽管目前人工智能备受炒作和推崇,但需要注意的是,并非所有的AI解决方案都是智能的。大量实例表明,AI的行为愚蠢得令人吃惊。这主要是由于人工智能依赖于用于创建底层神经网络的良好训练数据。训练AI系统就是一个很好的“垃圾进、垃圾出”的例子:训练数据选择不当会导致系统反映出训练数据集的所有缺点和弱点。并且,如果系统在以后的使用中遇到了超出训练范围的情况,其行为就会变得不可预测。因此,无论是网络的规模还是训练数据的规模都不能表明AI解决方案的质量。影响质量的最主要因素是训练时使用的数据。由于这些数据通常是由人类选择的,属于AI与人类之间的交互,但这种交互常常被忽视,需要加以掌握。并非所有智能系统都是AI另一方面,并非每一个看起来很智能的技术系统都是基于目前所理解的AI(神经网络)。复杂的工业设施,例如炼油厂、发电厂或类似设施,已经在没有使用AI的情况下运行了几十年。确定性控制算法已经发展到了一定水平,很容易给外界观察者留下智能的印象。以模型预测控制为例:系统的传感器读数用于确定其当前状态。然后通过动态模型方程运行该状态,模拟对系统执行器的不同指令。利用优化算法,找到能使系统最接近理想状态的最佳执行器指令。然后将该指令下达给物理执行器以运行流程。在每个控制步骤中都会重复这个算法,在某些情况下甚至会以亚秒级的间隔重复。由于动态模型方程是基于物理定律,系统可以处理以前没有遇到过的情况,即没有先前数据的情况。然后,人类操作员监控系统的行为,仅通过调整设定值来驱动运行。总之,在创新中“与AI合作”可以带来很多好处,但重要的是要预料意外,并积极应对潜在的风险和挑战。这包括要设立明确的目标和期望,确保所使用的AI系统与公司甚至国家层面的价值观和目标相一致,并对AI系统和人类能力的局限性进行期望管理。5创新开胃应用创新开胃应用本章总结了作为工业用例引入的小型创新和突破性创新,每项创新都具有挑战性的主题和令人惊讶的最终解决方案。技术成熟度各不相同,从研发项目的实际成果所产生的示范产品状态,到市场上成熟的行业解决方案,不一而足。所选案例源自作者的专业经验,是在作者为ICT(信息和通信技术)和自动化领域的跨国公司工作时为了制造流程的创新而开发的。在产品或制造流程以及生命周期的不同阶段,必须应对不同的挑战。因此,下一章列出的用例分为以下三组:设计与工程运营维护当前,各行各业正处于双轨转型过程(数字化转型和绿色转型)中,产品和流程的碳足迹已成为一种新货币。由于可以访问数据,AI会成为将经验流程知识转化为预测性解决方案的关键使能器。这些解决方案将为客户和相关价值链节省成本。在钢铁和橡胶等较为传统的行业,为预测性和规范性AI创建模型仍旧任重而道远。随着时间的推移,经验会不断积累。这是因为前端流程中的过程数据仍然缺失,需要传感器集成来生成这些数据,这也是棕地更新的目标。传统制造业的用例面临更多的挑战和瓶颈,因为它们:通常是客户自建的,无法与其他设施进行比较,即来自类似设施的数据往往是不相关的。是为执行特定任务而设计的,正常运行的结果是已知先验,并遵循工程结构和物理原理:这大多是基于物理模型完成的。因此,与消费者分析不同,工业客户不希望了解平均(正常)运行情况,而是希望找到异常值(意外、故障)。设计工厂或机器时考虑的特定任务会反复执行。收集到的数据只有极小的差异,从而会证实先验知识。有关意外和故障的数据非常罕见,不足以得出统计结论。在工业设施的不同阶段(工程运行维护)具有不同的生命周期。所有阶段对于工厂的性能都同等重要。此外,工厂的生命周期比运行工厂所使用的软件的生命周期更长。许多工业流程都很危险。错误可能导致损害和人员伤亡,甚至造成更大规模的环境破坏。试错是不可接受的。6与用于大规模AI解决方案训练的数据集相比,有关工业流程的数据和信息更为稀缺。此外,数据集属于工业企业财产,往往不易获得。欧洲目前的研发计划(GAIA-X、Catena-X、Manufacturing-X)正致力于通过资助制造业的数字化转型来解决其中的一些问题。欧洲议会于2022年4月6日通过的数据治理法旨在促进欧盟境内的数据共享,从而使公司和初创企业能够获得更多数据,用于开发新产品和服务。只有当利益相关方和用户能够访问大数据时,人工智能的潜力才能得到充分发挥。Angelika Niebler(欧洲议会的德国议员)主导欧洲议会通过了上述法案,她表示:“数据只有经过汇总、提炼并以正确的方式使用才有价值。一些企业可能甚至不知道可以利用其工业机器等产生的数据做些什么。更多的数据共享可以带来新的商业模式,实现更高的效率,或者改进产品。”从这个意义上说,下文列出的每一个创新用例都可能成为读者想要跟进的一段旅程的起点,从而了解可以用数据做些什么。因此,我们希望将这些用例称为创新开胃应用,以引起读者的好奇心,并介绍创新厨房中的全新“热卖”食谱人类和AI团队提供的开胃菜(设计和工程阶段)、主菜(运营阶段)和甜点(维护阶段)。在介绍每个创新用例之前,会有一段引文来阐述相关主题,并在结尾处提供有关商业价值主张和关键绩效指标的信息。创新就是要改变观点,提出正确的问题,并敢于创新。为了引入创新精神,在编写创新故事时,每个用例都会以一段引文作为开头,表示不同的角度。这是一种思维转换的实践,打破了传统的解决问题的方式。引文引文Nur wer das Frchten nie erfuhr,schmiedet Nothung neu.从未感受过恐惧力量的人什么也锻造不了。理查德瓦格纳:齐格弗里德,第1幕,第2场理查德 瓦格纳的歌剧齐格弗里德提到了要提出正确的问题,齐格弗里德敢于无视惯常的铸剑方法,不偏袒历史悠久的行会专长。最后,他成功地找到了新的铸剑方法。从这个意义上说,克服恐惧、拥抱未知的想法可能与创新过程有关,因为创新往往需要承担风险,涉足未知领域。要想为问题提出新的、具有创意的解决方案,就必须愿意挑战自己的假设,跳出思维定势,即使这意味着涉足可能不熟悉或不确定的领域。这种拥抱变化和接受挑战的意愿可以是成功创新的一个重要方面。当AI作为用于创新的新工具,这一点尤为重要。7在每个用例中,我们都会指出它将为客户带来哪些价值。在本书所涉及的工业、B2B环境中,价值归根到底是指通过新的解决方案产生的现金。在进行投资决策时,通常需要计算净现值,其中必须考虑解决方案带来的正现金流。所以,我们要指出解决方案将对客户现金产生积极影响的领域。为此,我们使用了图1所示的雷达图。图1:用于显示客户价值领域的价值雷达图图表左侧的区域有助于增加产品销量,即通过增加销量或通过提高设备运行效率(OEE)来增加产量。图表右侧是可以减少的成本项目:销货成本(COGS)、运营支出(OPEX),或资本支出(CAPEX)。右下方的部分是营运资金的变化。我们发现影响制造业的解决方案会影响库存水平。对应收账款或应付账款有影响的解决方案可能与业务流程自动化更相关,为简便起见,未将其包含在雷达图中。请注意,雷达上列出的现金杠杆并不完整。可能还有一些影响总收入或净利润的方面没有列出。这些内容将添加到图表旁边的注释文本中,根据具体用例的情况对价值进行解释。经过我们多年的分析,雷达图已被证明对大多数工业应用而言是相当全面和完整的。8第一道菜设计和工程作为第一道菜,我们倾向于从设计和工程过程中提供一些启发性的开胃应用,因为大多数创新都是从这里开始的。产品和系统的设计侧重于满足客户的要求和技术规范,而工程则结合了科学和数学领域,在客户现场解决特定问题。如今,我们看到工程学的定义发生了转变:从传统的机器设计和工程到社会技术系统的“工程”(德国国家工程院),社会和环境也成为价值链中新的利益相关方。政界要求开始关注与产品生命周期相关的循环经济,从设计阶段开始,直至材料的回收和再利用。最新的例子是,欧洲要求遵守能源和产品碳排放方面的规定,以实现双轨转型目标(数字化转型和绿色转型)。到2050年,可持续的数字化技术将使欧盟实现碳中和。“基于模型的系统工程(MBSE)是对建模的形式化应用,以支持系统需求、设计、分析、验证和确认活动,从概念设计阶段开始,贯穿整个开发和后续的生命周期阶段。MBSE技术方法通常应用于拥有复杂系统的各行各业,例如航空航天、国防、铁路、汽车、制造业等。”(摘自维基百科)由于系统性能与设计阶段设定的系统边界密切相关,后期纠正设计和工程阶段出现的错误会产生极高的成本。然而,数字孪生的兴起能够在产品的早期阶段模拟物理属性和环境参数,而不再需要花费高昂的成本来制造原型。因此,可以避免错误,减少材料和能源消耗,并避免回收原型硬件。此外,连接到云服务和访问数字孪生可能会带来更加灵活的系统边界。通过按需部署云服务可以提高系统的弹性和适应性。当获得运营数据和反馈时,工程和运营阶段开始重叠。9 用例:产品设计和工程中的生成式AI对于制造企业来说,保持竞争力是成功的关键。最近在生成式AI领域取得的成功让人们产生了将这种方法用于产品设计和工程的想法。通过利用机器学习和数据分析的力量,公司可以创造出满足客户需求的创新且高效的产品。客户的挑战关于生产优化和维护方面的AI应用已经有了很多论述。此外,这些精选的用例参考了几篇致力于改善工厂运营的论文。然而,工厂设计和建造中的错误很难在运行时得到纠正,或者说,即使能被纠正,代价也非常高昂。工厂一旦建成,可能会按照“建成时”的配置运行数年而不作任何更改(例如制炼厂)。离散制造工厂在生产新产品系列时可能会进行重新配置。因此,在工厂的生命周期内,我们可以确定三个周期:工厂设计、建造和运营产品设计和生产产品制造和维护所有这些都包括生产运行。在调整设备的设定值来优化运行时,可以基于大量持续收集的运行数据。然而,对于产品重新设计周期而言,从之前的产品中收集的数据可能并不相关,而且为了提供足够的数据所需收集数据的频率要低得多。工厂的设计周期大多甚至不是一个周期周期是指工厂从建成到运行,直到几十年后被拆除。因此,要想基于测量数据来优化工厂设计,相关数据很难获得。工厂工程和产品设计都必须依赖仿真能力来提供相关的优化数据。一旦实现了这一点,就可以建造工厂,或者对工厂进行改造,以生产新的产品系列。引文引文Une cathdrale est bien autre chose quune somme de pierres.Elle est gomtrie et architecture.Ce ne sont pas les pierres qui la dfinissent,cest elle qui enrichit les pierres de sa propre signification.教堂不仅仅是石头的堆砌。它是几何学和建筑学。不是石头决定了它,而是它用自己的意义丰富了石头。安托万 德 圣埃克絮佩里,战争飞行员一块又一块石头#生成式设计10最近,随着ChatGPT、Dall-E等受到热议的解决方案的发布,生成式AI算法受到了广泛关注。生成式算法不仅能将输入数据集映射到输出数据集,而且通常具有更复杂的结构。其中一类算法是生成对抗网络(GAN)。在这种情况下,两个网络进行对赌。其中一个是生成器,经过训练后可以根据输入数据集创建输出,例如根据描述创建图片。另一个是判别器,负责接收原始输入和生成器人工生成的输入,并经过训练来判断输入是生成的还是原始的。当判别器检测到人工输入时,就会将这一信息反馈给生成器,让生成器学习创建更逼真的输出,并诱使判别器将生成器的输出评定为真实输出。在这种系统中,生成器会随着时间的推移变得越来越好。这样的系统可以比作大师和评论家:大师提供作品,评论家评定好坏。然后,大师学习哪些作品被评为好作品,随着时间的推移,大师只会收到好的评价。这一概念可应用于产品设计。系统接收零部件的规格。生成器可以创建符合规格的零部件设计。判别器根据规格对这些设计进行评定,然后生成器创建新的设计,使其变得更好,最终满足规格要求。为了使这些系统更加有效,它们不能只依赖AI模型。生成式设计工具能够对零部件的物理属性进行建模和仿真,因此可以通过仿真其行为并将其与设计规格进行比较来评估设计的表现。人类设计师从一组表现相似的生成式设计中选择最终设计,或在整个过程中根据人类经验调整参数来改进设计。所产生的生成式设计通常具有更加有机的外观:设计沿着力场和应力矢量分配材料,从而形成在自然界中经常看到的结构,特别是植物的生长形态。这些在地球历史上不断演变的形态是最有效的结构之一。传统的减材机械无法有效地制造这种结构。为了创造上述结构,增材制造通常是首选的生产方法。生成式设计可以在材料使用和重量方面更加高效。它们还能产生人类未曾感知到的全新设计理念。软件是一个特例。软件是以文本(编程语言)的形式设计的,近期基于语言的模型(例如ChatGPT)非常适合处理文本。很多参考文献让ChatGPT写的不是文章或论文,而是计算机软件。它的表现相当出色。在软件方面,我们已经可以看到,工程任务未来可能会更多地关注概念性问题,而编写正确、安全代码的细节可能会由AI智能体负责。即使是像PLC应用这样的专业软件,这也是可能的:西门子在2023年汉诺威工业博览会上展示了使用ChatGPT生成PLC代码的技术。基于AI的挑战和机遇11 结论生成式算法的飞速发展,尤其是在语言、图像和视频方面的发展,也为工程领域带来了巨大的潜力。正如它们在软件工程中展现出的优势一样,不理解计算机语言但理解物理语言的类似解决方案可以为更快地设计产品或组件提供巨大支持。此外,它们还能更精确地满足人类设计师提出的规格要求。目前,许多PLM供应商都提供此类软件包,在不久的将来,我们可能会看到这一领域取得更多进展。为了真正从新方法和由此产生的优化设计中获益,在许多应用中都需要对制造进行调整以包含增材制造能力,从而能够创造出设计的形状。生成式设计和增材制造共同创造了新的机遇,为设计工程师提供了更强大的工具。产生的价值生成式设计通常能更高效地利用材料,使产品更轻(“不动产”的重量更轻)。自动创建供检视的变体可提高员工的工作效率。自动化程度更高的设计可提高产品配置的灵活性,缩短上市时间。12引文引文Zukunft ist kein Schicksalsschlag,sondern die Folge der Entscheidungen,die wir heute treffen.未来并非命运的安排,而是我们今天所做决定的结果。弗朗兹 阿尔特 用例:产品和流程设计中的产品碳足迹跟踪我们可以在今天做出的影响产品和流程的未来的决定往往在产品和流程设计阶段就开始了。目标是通过“设计”,在整个生命周期内尽可能实现可持续发展。设计阶段还包括材料回收和二次利用,解决产品和流程从“摇篮到坟墓”期间的循环经济需求。客户的挑战可持续产品倡议(SPI)是欧盟“绿色新政”的一部分,就产品碳足迹(PCF)的申报提出了新的监管要求。数字产品护照可能会涵盖PCF。所有行业都可能被要求以数字产品护照(DPP4.0)的形式提供某些产品信息2。DPP可能是促进更可持续的产品和消费的一大步,通过使能基于数字数据共享等新型商业模式来提高能源和资源效率。西门子技术副总裁兼对外合作负责人、ZVEI工业4.0管理部主席DieterWegener教授博士认为:“DPP有助于极大地提高能源和材料供应的安全性,从而增强经济韧性”3。从这个意义上说,有助于可持续发展的数字产品护照已成为一种新的货币,使企业在与不遵从DPP规定的供应商竞争时更具优势。ZVEI在2023年汉诺威工业博览会上示范了首款高度集成的产品4。作为用例,ZVEI选择了一台由多个模块组成的控制机柜,其中每个模块都由其数字孪生(资产管理壳)进行描述5。由于每个资产管理壳中的子模型都包含其制造过程中的产品碳足迹(PCF)数据,因此,将每个模块组装过程中的所有单个PCF相加,就可以轻松计算出整个机柜的综合碳足迹。如下图所示,扫描每个组件及整个产品的二维码就可以监控数据,因此就有了透明度。*2.https:/www.zvei.org/en/subjects/zvei-show-case-pcfcontrolcabinet*3.https:/ 61406(识别链接)的数字铭牌(DNP4.0)和 符合IEC 63278标准(正在开发)的资产管理壳(AAS)如图3所示,工程流程包括公司与相关IT系统之间的许多接口。除了必须传输工程数据外,各个组件的数据也必须从供应商传输到系统集成商。在这个简单的例子中,已经有15家公司参与其中,需要从这些公司获取56种产品和组件的数据以实现增值,最终形成由93个零部件组成的一个系统。图3:工程办公室、系统集成商和客户之间的价值链数据共享14 产生的价值监管合规:对产品进行二氧化碳跟踪,减少数吨的产品纸质文档,从而获得竞争优势。产品吸引力:DPP将帮助利益相关方和消费者在购买和使用产品、产品所体现的环境影响,或可回收材料含量方面做出更明智的决定6。生命周期成本:DPP为产品的再利用/再循环提供了必要的信息。结论和展望2022/2023年汉诺威工业博览会上的示范产品令人印象深刻,展示了如何在资产管理壳(AAS)和数字铭牌(DNP4.0)的帮助下呈现产品信息,并在相关流程中自动使用。计算控制机柜在整个供应链中的产品碳足迹(PCF)就是一个很好的例子。这个技术解决方案能够提供产品信息,还体现了数字产品护照(DPP4.0)的概念。AAS旨在简化系统集成和减少工程工作量。这将得到作为子模型的AAS的附加元信息的支持。这将为更深入地集成其他网络(如GAIA-X和Catena-X)奠定基础7。基于AI的挑战为了促进生产和产品的可持续发展,我们在设计产品时就必须考虑到产品的整个生命周期。这包括监控整个供应链以及组件和材料的回收和再利用。需要使用AI工具来分析和选择数字市场中不同供应商提供的组件的数字孪生。在工程阶段,将通过优化多个参数来选择组件,例如匹配技术规格、有关能源和PCF消耗的环境要求、客户对交货时间和成本的要求,以及供应链的韧性。当前的差距表明,需要进一步开展研发工作,开发未来的生成式预训练AI模型,以访问和分析数字市场中提供的资产和生产能力的数字孪生。*6.https:/ 用例:5G使能价值创造过去,我们制造了完美的机器,现在仍然如此。但是,与量产场景和通过固定设计来满足客户要求的规格不同,我们如今面临的新挑战是如何使系统具有适应性、弹性和可持续性。客户的挑战为了实现量产,机器的有线解决方案和固定设计为我们赢得了“过去的胜利”,但现在我们可以考虑增加无线连接,以数据为基础创造价值,不再区分联网的硬件、软件和服务。机器和模块可以在工厂内外进行连接,以实现新的生产范式,例如共享生产场景。5G能够对机器进行棕地更新,使系统边界更加灵活,因为基于数据的云服务可以集成更多的功能,这与最初的设想不谋而合。随着市场上出现的“类电缆”(确定性)无线网络解决方案(5G+:5G及更高代际),传统机器可以通过5G进行更新,按需增加模块和传感器,并部署智能云服务,以实现质量和流程控制等。这就是对现有机器进行“棕地更新”,例如将焊接、铣削、钻孔和数控制造所需的生产机器连接到云端,实现基于数据的在线流程自动化。这样一来,由于车间不再需要其他硬件,可以在减少二氧化碳足迹的情况下实现更高的质量,而且基于资产数字孪生,可以在数字空间中进行复杂的仿真和服务提供。基于AI的挑战在汉诺威工业博览会和5G-ACIA(互联产业和自动化联盟)的网络研讨会上展示的与基于5G的智能制造相关的各种创新用例中,都可能涉及基于AI的挑战。用例用例1安全和模块认证(基础设施即服务:IaaS):与安全相关的机器验证以云服务的形式提供。通过在车间运行的资产的数字孪生了解安全风险,并颁发虚拟证书。利用AI服务进行环境筛查和物体检测,以监控是否发生未曾预料的额外安全风险。此外,通过进一步的研发来涵盖AI服务本身的风险,从而开发可信服务。孙子兵法中的战术#5G使能价值创造16图4:通过自动安全验证实现快速的机器重配置(Eco Connect Rom,2019)如图4所示,自适应的无线联网机器的最新安全认证场景是基于车间运行资产的数字孪生。与车间资产(例如机器人)相关的风险由其数字孪生在特定环境场景下进行描述。AI可用于监控环境,即是否仍按计划进行,甚至可以展望几秒钟后的未来。这种预测性风险管理带来了新的动态认证流程。中央安全控制回路不再局限于有线联网的资产。如果紧急停止,无线联网的机器也会停止。用例用例2在产品运输过程中通过AI服务实现增值:如图5所示,AGV在物流领域的增值:利用运输时间进行按需的质量控制。在对AGV进行棕地更新时,集成了一个具有5G连接功能的摄像头。在产品运输过程中,将图像数据发送到边缘位置,进行质量评估。最佳情况是AGV将货物运送到下一个生产步骤或客户处。如果在运输过程中发现缺陷,AGV会把产品运至维护区,请求人工操作员的支持。用于质量控制的AI服务包括对AI模型进行训练,并利用共享同一用例的其他多台机器的进一步数据更新数据库。这就是所谓的“联邦学习”,可为所有地点提供最佳性能,因为缺陷一旦在单个机器或地点被发现,就会在所有地点被检测到。17图5:利用5G质检测试台对AGV进行棕地更新(HMI2022)产生的价值灵活性:5G为生产提供了必要的灵活性,可以更好地满足客户需求。上市时间:如果机器采用无线连接,工厂车间的重新配置速度会更快。生命周期成本:基础设施投资可在其生命周期内重复用于各种工厂配置。因此,预计到2030年,5G技术将使全球制造业的国内生产总值(GDP)增加高达7,400亿美元8。结论和展望5G+无线连接可以使能连网生产和AI服务的新型工业场景。目前已为5G机器人和制造业创建了各种测试台,并发布了相关评估结果(5G-ACIA,2021-2023年汉诺威工业博览会)。其他信息和参考文献https:/5g-acia.org/testbeds/testbed-5g-based-smart-manufacturing-and-industrial-ai-services/https:/5g-acia.org/insight/endorsed-testbeds/*8.Adib,D.(2019):5G对制造业的影响2030年实现7,400亿美元收益。STL Partners顾问公司,伦敦。18 用例:以绕线机为例的云制造电动发动机是使用传统绕线机器制造的。然而,这些机器的设计限制了新型发动机产品线的绕线,因为这些产品线的几何形状或设计上都不在传统绕线机的范围内。客户的挑战预计电动机市场将从2023年的1,356.1亿美元增长到2031年的2,140.6亿美元,预测期间(2023-2031年)的年增长率(CAGR)为5.32%10。高昂的产品成本和复杂的绕线技术要求新的自适应制造解决方案能够制造从消费类电机到机械和汽车的各种产品线。电动发动机日益增长的市场潜力需要灵活的生产能力和构件,例如传统机器人系列。*9.https:/en.wikipedia.org/wiki/Law_of_the_instrument*10.https:/www.wbk.kit.edu/wbkintern/Forschung/Projekte/AgiloDrive/index.php工具定律即金锤定律,是一种认知偏差,包括对某一熟悉工具的过度依赖9。基于AI的挑战和未来机遇绕线工艺已经超越了传统绕线机的功能,被重新视为一种焊接工艺。机器人将叉形针插入定制的定子孔中,而不是绕铜线。如图6所示,在第二个生产步骤中,通过焊接针元件形成发动机的连接线,从而实现连接。这一工艺创新是人为的,但也可能是未来AI分析数字孪生并识别可用于制造产品的不同生产能力的良好范例。可以访问产品和工艺能力的数字孪生(资产管理壳)的通用AI模型或许可以为任何现有制造工艺提出新的解决方案。工艺工程师必须决定是批准还是驳回这样的解决方案。下方的图6介绍了基于鲁棒的机器人构件的敏捷生产能力,展示了电动发动机的不同制造流程。设计已经改变,发动机定子是3D打印的,机器人负责插入和连接针。金锤定律#云机器人引文引文如果你唯一的工具是一把锤子,那么就很容易把所有事情都当成钉子来对待。亚伯拉罕 马斯洛,196619工程设计(传统)传统绕线机上的电机绕线 产品(发动机)的设计限制与绕线工艺有关创新设计(利用不同的能力)重新定义绕线工艺。插入针头并通过焊接进行连接 利用敏捷构件使产品要求与生产技能相匹配图6:KIT项目AgiloDrive展示了敏捷生产能力的构件 产生的价值设备TCO:基于机器人的灵活绕线方法使专用绕线机变得过时。可以重新配置机器人以覆盖其他产品类型,而绕线机的灵活性仅限于特定的产品范围。灵活性:无需新机器即可生产客户定制的电机。结论云机器人创新使智能机器人具有更高的计算效率和更低的功耗。由于需要的硬件更少,制造成本可以降低。产品生命周期中的产品和流程的碳足迹得以减少。20 用例:光学检测设计出一种能够检测隐形属性的光学系统!这无疑是一项工程挑战。这项创新开胃应用涵盖两个领域:设计和运行,不过创新是在设计域完成的,并在运营领域证明了其价值。图7:Dall-E生成的图片:“人员轻触在产汽车以检测缺陷”客户的挑战白车身(BIW)是指在汽车制造过程中,车身框架连接在一起的阶段,即在喷漆完成之前,以及在电机、底盘分总成集成到车身结构之前的阶段11。白色车身是油性的,因此不会反射任何光线。所以,人眼无法看到表面缺陷,只能由经过培训的质量“检验”人员在白色车身被运往喷漆车间的过程中通过触觉检测。如图7所示,人员轻触整辆车,以感受并修复凹凸等表面缺陷,使其符合质量管理要求。和再次*11.https:/en.wikipedia.org/wiki/Body_in_white眼见为实?#光学检测引文引文眼见为实,但感受才是真理。托马斯 富勒(17世纪作家)21任何缺陷都会导致额外的成本,因为在喷涂工艺后,这些缺陷就会显现出来,必须进行修复和再次喷涂,从而导致非常高昂的成本和时间损失。由于人工检验结果取决于检验人员的个人主观能力,存在不可靠性,因此需要对这项流程进行创新:设计一种集成视觉系统的流程,用于在白色车身运往喷漆车间的过程中客观检测车身表面缺陷。巴伐利亚州公共资助的名为“ABIS自动车身检验系统”的研发项目由此启动。由于存在时间和在线流程整合等多方面的限制,对整辆汽车进行三维数据采集并不可行,因此该项目利用了一项专利,实现了一次性的数据采集。这背后的基本思路是使用投影仪相机对,其中投影仪以倾斜角度向表面区域投射灰阶正弦波图案,而摄像机则垂直于该表面区域。任何表面缺陷都会导致在图像中检测到局部相移,从而可以计算出该缺陷确切的三维尺寸。由于图像尺寸仅覆盖20厘米乘20厘米的区域,因此采用了集成多个相机和投影仪对的门式系统设计。当白色车身经过门式机器人被传送到喷漆车间时,每个投影仪和相机对都会根据汽车的CAD文件和运动过程中的实际位置被引导到正确的位置。如图8所示,这样就可以对整辆汽车进行无缝检验。图8:自动车身检验系统“ABIS”从手工到机器人检验的演进 基于AI的
展开阅读全文