资源描述
绍兴市绍兴一初八年级上册期末数学试卷含答案
一、选择题
1、下列医疗或救援的标识中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、已知一粒米的质量是0.0000021千克,这个数字用科学记数法表示为( )
A.千克 B.千克 C.千克 D.千克
3、下列计算结果错误的是( )
A.a2•a3=a5 B.(a3)2=a6 C.a5÷a5=a D.(ab)3=a3b3
4、当分式有意义时,则的取值范围是( )
A. B. C. D.
5、下列各式中,从左向右的变形属于因式分解的是( )
A. B.
C. D.
6、如果把分式中的x,y都扩大3倍,那么分式的值( )
A.扩大6倍 B.扩大3倍 C.不变 D.缩小3倍
7、如图,ABDE,,若添加下列条件,仍不能判断≌的是( )
A. B. C. D.
8、关于x的分式方程有增根,则m的值是( )
A.1 B.2 C. D.
9、如图,在△ABC中,∠B=74°,边AC的垂直平分线交BC于点D,交AC于点E,若AB+BD=BC,则∠BAC的度数为( )
A.74° B.69° C.65° D.60°
二、填空题
10、如图,两个正方形的边长分别为、,如果、满足,,则阴影部分的面积为( )
A. B.9 C.18 D.27
11、当x的值是________时,分式的值为零.
12、若点和点关于y轴对称,则______.
13、已知非零实数x,y满足x﹣y=2且﹣=1,则x2y-xy2的值等于 _____.
14、已知,m,n为正整数,则=______.(用含a,b的式子表示)
15、如图,四边形ABCD中,,,E、F分别是AD、AB上的动点,当的周长最小时,的度数是______.
16、如图1,将一个长为2a,宽为2b的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为,小正方形面积为,则的结果是________(用含a,b的式子表示).
17、已知x﹣3y=1,x3﹣3x2y﹣7xy+9y2=﹣3,则xy的值是 _____.
18、如图,已知中,,,,点D为的中点.如果点P在线段上以1的速度由点B向点C运动,同时,点Q在线段上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过_______秒后,;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为______时,能够使与全等?
三、解答题
19、分解因式:
(1)
(2)
20、按要求完成下列各题:
(1)化简:
(2)解分式方程:
21、已知:如图,相交于点.
求证:
22、阅读材料,回答下列问题:
【材料提出】
“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.
【探索研究】
探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ;
探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ;
探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 .
【模型应用】
应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示)
应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示)
【拓展延伸】
拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P)
拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 .
23、某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米.用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的?
(1)求每个,类摊位占地面积各为多少平方米;
(2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求最多建多少个类摊位.
24、如图①是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!
如图②是(a+b)n的三个展开式.结合上述两图之间的规律解题:
(1)请直接写出(a+b)4的展开式:(a+b)4= .
(2)请结合图②中的展开式计算下面的式:(x+2)3= .
25、已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
一、选择题
1、C
【解析】C
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
2、C
【解析】C
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:0.0000021千克用科学计数法表示为千克,故C正确.
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、C
【解析】C
【分析】由同底数幂的乘法可判断A,由幂的乘方运算可判断B,由同底数幂的除法运算可判断C,由积的乘方运算可判断D,从而可得答案.
【详解】解:a2•a3=a5,故A不符合题意;
(a3)2=a6,故B不符合题意;
a5÷a5=1,故C符合题意;
(ab)3=a3b3,故D不符合题意;
故选C
【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解答本题的关键.
4、A
【解析】A
【分析】根据分式分母不为0解答即可.
【详解】解:由,得,
故选:A.
【点睛】本题考查了分式有意义的条件,理解分母不为0是解本题的关键.
5、B
【解析】B
【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③等号左、右两边相等,根据以上条件进行判断即可.
【详解】解:A、,不是因式分解,则此项不符合题意;
B、,是因式分解,则此项符合题意;
C、,不是因式分解,则此项不符合题意;
D、,则此项不是因式分解,不符合题意;
故选:B.
【点睛】本题考查了因式分解,熟练掌握因式分解的概念是解题关键.
6、C
【解析】C
【分析】根据分式的基本性质即可求出答案.
【详解】解:把分式中的x,y都扩大3倍,得
,
故其值不变.
故选:C.
【点睛】本题考查了分式的基本性质,解题的关键是熟练运用分式的运算法则.
7、A
【解析】A
【分析】根据全等三角形的判断方法一一判断即可.
【详解】解:A.缺少全等的条件,本选项符合题意;
B.∵ABDE,
∴∠B=∠E
∵
∴
∴
∵
∴≌(SAS)
故本选项不符合题意;
C.∵ABDE,
∴∠B=∠E
∵,
∴≌(ASA)
故本选项不符合题意;
D.∵ABDE,
∴∠B=∠E,∠ACB=∠DFE
∵
∴≌(AAS)
故本选项不符合题意.
故选:A.
【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
8、B
【解析】B
【分析】根据题意可得x=1,然后代入整式方程中进行计算,即可解答.
【详解】解:,
m-2=3(x-1),
解得:x=,
∵分式方程有增根,
∴x=1,
把x=1代入x=中,
1=,
解得:m=2,
故选:B.
【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.
9、B
【解析】B
【分析】连接AD,由线段垂直平分线的性质可得AD=CD,进而可得∠DAC=∠C,由等腰三角形的性质可得∠ABD=∠ADB=74°,由外角的性质和三角形内角和定理可求解.
【详解】解:如图,连接AD,
∵边AC的垂直平分线交BC于点D,
∴AD=CD,
∴∠DAC=∠C,
∵AB+BD=BC,BD+CD=BC,
∴CD=AB,
∴AD=AB,
∴∠ABD=∠ADB=74°,
∴∠C=37°,
∴∠BAC=180°﹣74°﹣37°=69°,
故选:B.
【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,掌握等腰三角形的性质是本题的关键.
二、填空题
10、A
【解析】A
【分析】由两个正方形面积之和减去△BEF和△BCD的面积之和即可得到答案.
【详解】由图可得:,
∴,
将,代入得:,
故选:A.
【点睛】本题考查乘法公式在几何图形面积计算中的应用,准确表示各部分面积并结合乘法公式进行合理变形是解题关键.
11、-3
【分析】根据分式值为零的条件是分子等于零且分母不等于零列出不等式,解等式或不等式即可.
【详解】解:由题意得|x|-3=0,且2x-6≠0,
解得,x=±3,x≠3,
∴x=-2、
则x=-3时,分式 的值为零.
故答案为:-2、
【点睛】本题主要考查的是分式值为零的条件,特别注意分母不为0的条件,熟练掌握相关知识是解题的关键.
12、
【分析】由点和点关于y轴对称,列方程组先求解 再利用进行计算即可.
【详解】解: 点和点关于y轴对称,
解得:
故答案为:
【点睛】本题考查的是关于轴对称的两个点的坐标关系,同底数幂的乘法的逆用,积的乘方的逆用,二元一次方程组的解法,掌握以上基础知识是解本题的关键.
13、-4
【分析】根据已知条件式变形,求得,代入代数式求值即可求解.
【详解】解:∵x﹣y=2且﹣=1
∴,则
∴x2y-xy2 =xy(x-y)=-2×2=-3、
故答案为:-3、
【点睛】本题考查因式分解的应用,分式的性质,解题的关键是熟练运用因式分解,整体思想.
14、
【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可.
【详解】解:∵,
∴,
∴.
故答案为:
【点睛】本题考查幂的乘方公式和同底数幂的除法.熟练掌握公式,并能逆运用是解题关键.
15、40°##40度
【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案.
【详解】作C关于BA
【解析】40°##40度
【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案.
【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为△CEF的周长最小值.
∵,,
∴∠DCB=110°,
由对称可得:CF1=F1N,E1C=E1M,
∴,
∵,
∴,
∴,
即当的周长最小时,的度数是40°,
故答案为:40°.
【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等角等知识,根据已知得出的周长最小时,E,F的位置是解题关键.
16、4ab
【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.
【详解】∵为图2大正方形的面积;为小正方形面积,
∴为图1长方形面积
∴=2a×2b=4ab
【解析】4ab
【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.
【详解】∵为图2大正方形的面积;为小正方形面积,
∴为图1长方形面积
∴=2a×2b=4ab
故答案为:4ab
【点睛】本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键.
17、4
【分析】先把x3﹣3x2y分解因式得x2(x﹣3y),把x﹣3y=1整体代入x3﹣3x2y﹣7xy+9y2 =﹣3得x2﹣6xy+9y2﹣xy=﹣3,再倒用一次完全平方公式,即可求出xy的值.
【解析】4
【分析】先把x3﹣3x2y分解因式得x2(x﹣3y),把x﹣3y=1整体代入x3﹣3x2y﹣7xy+9y2 =﹣3得x2﹣6xy+9y2﹣xy=﹣3,再倒用一次完全平方公式,即可求出xy的值.
【详解】解:∵x﹣3y=1,
∴x2﹣6xy+9y2=1,
∴x3﹣3x2y﹣7xy+9y2=﹣3,
∴x2(x﹣3y)﹣6xy+9y2﹣xy=﹣3,
∴x2﹣6xy+9y2﹣xy=﹣3,
∴1﹣xy=﹣3,
∴xy=3、
【点睛】本题主要考查了整体代入的数学思想方法,和逆用完全平方公式,掌握整体代入法是解题的关键.
18、1 1.5##
【分析】①由题意可得,,根据,可得,求出的长度,即可求解;②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q
【解析】 1 1.5##
【分析】①由题意可得,,根据,可得,求出的长度,即可求解;②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
【详解】解:①由题意可得,
∵
∴
∴
∴
②由题意可得,∴
又∵
∴
∴,
∴,
∴
故答案为1,1.5
【点睛】本题考查全等三角形的判定和性质、路程=速度×时间的公式,熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系是解决问题的关键.
三、解答题
19、(1)2x(x+2)(x-2);
(2)(4-x+y)2
【分析】(1)利用提公因式法和平方差公式分解;
(2)利用完全平分公式分解.
(1)
解:
=2x2(x-4)
=2x(x+2)(x-2)
【解析】(1)2x(x+2)(x-2);
(2)(4-x+y)2
【分析】(1)利用提公因式法和平方差公式分解;
(2)利用完全平分公式分解.
(1)
解:
=2x2(x-4)
=2x(x+2)(x-2)
(2)
=(4-x+y)2
【点睛】此题考查了多项式的分解因式,正确掌握因式分解的定义及解法是解题的关键.
20、(1)1
(2)分式方程无解
【分析】(1)先因式分解,然后进行除法运算,最后进行加法运算即可;
(2)先通分,去分母,然后移项合并求得,最后进行检验即可.
(1)
解:原式
(2)
解:
通分
【解析】(1)1
(2)分式方程无解
【分析】(1)先因式分解,然后进行除法运算,最后进行加法运算即可;
(2)先通分,去分母,然后移项合并求得,最后进行检验即可.
(1)
解:原式
(2)
解:
通分得:
去分母得:
移项合并得:
检验,将代入得,故不是原分式方程的解,是增根
∴分式方程无解.
【点睛】本题考查了分式的化简求值,解分式方程.解题的关键在于正确的计算求解.未进行检验是解分式方程的易错点.
21、见解析
【分析】先证明△ABC≌△DCB,再证明△AOB≌△DOC,可得结论.
【详解】证明:在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS).
∴∠A=∠D .
在△AOB和△
【解析】见解析
【分析】先证明△ABC≌△DCB,再证明△AOB≌△DOC,可得结论.
【详解】证明:在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS).
∴∠A=∠D .
在△AOB和△DOC中,
,
∴△AOB≌△DOC(AAS).
∴OA=OD.
【点睛】本题考查三角形全等的判定,灵活选用判定方法是解题的关键.
22、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
探索二:根据角平分线
【解析】∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;
探索三:运用探索一和探索二的结论即可求得答案;
应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;
应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;
拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;
拓展二:运用探索一的结论及角平分线定义即可求得答案.
【详解】解:探索一:如图1,
∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,
∴∠A+∠B=∠C+∠D,
故答案为∠A+∠B=∠C+∠D;
探索二:如图2,
∵AP、CP分别平分∠BAD、∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,
∴∠B﹣∠P=∠P﹣∠D,
即2∠P=∠B+∠D,
∵∠B=36°,∠D=14°,
∴∠P=25°,
故答案为25°;
探索三:由①∠D+2∠1=∠B+2∠3,
由②2∠B+2∠3=2∠P+2∠1,
①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
∠D+2∠B=2∠P+∠B.
∴∠P=.
故答案为:∠P=.
应用一:如图4,
延长BM、CN,交于点A,
∵∠M=α,∠N=β,α+β>180°,
∴∠AMN=180°﹣α,∠ANM=180°﹣β,
∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;
∵BP、CP分别平分∠ABC、∠ACB,
∴∠PBC=∠ABC,∠PCD=∠ACD,
∵∠PCD=∠P+∠PBC,
∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,
故答案为:α+β﹣180°,;
应用二:如图5,
延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,
∵∠M=α,∠N=β,α+β<180°,
∴∠A=180°﹣α﹣β,
∵BP平分∠MBC,CP平分∠NCR,
∴BP平分∠ABT,CP平分∠ACB,
由应用一得:∠P=∠A=,
故答案为:;
拓展一:如图6,
由探索一可得:
∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,
∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,
∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,
∠PAB=∠CAB,∠PDB=∠CDB,
∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,
∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,
∴∠P=,
故答案为:∠P=;
拓展二:如图7,
∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,
∴∠PAD=∠BAD,∠PCD=90°+∠BCD,
由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,
②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,
③﹣①,得:2∠P﹣∠B=∠D+180°,
∴2∠P﹣∠B﹣∠D=180°,
故答案为:2∠P﹣∠B﹣∠D=180°.
【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.
23、(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米
(2)最多建22个类摊位
【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个
【解析】(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米
(2)最多建22个类摊位
【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可;
(2)设类摊位的数量为个,则类摊位的数量为个,由题意:建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可.
(1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则.答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米.
(2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,所以的最大值为21、答:最多建22个类摊位.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式.
24、(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(
【解析】(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(1)a4+4a3b+6a2b2+4ab3+b4,
故答案为:a4+4a3b+6a2b2+4ab3+b4;
(2)(x+2)3=x3+6x2+12x+8,
故答案为:x3+6x2+12x+7、
【点睛】本题考查了对完全平方公式的应用,杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.
25、(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(
【解析】(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
展开阅读全文