收藏 分销(赏)

毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc

上传人:天**** 文档编号:4882214 上传时间:2024-10-17 格式:DOC 页数:49 大小:888.04KB
下载 相关 举报
毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc_第1页
第1页 / 共49页
毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc_第2页
第2页 / 共49页
毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc_第3页
第3页 / 共49页
毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc_第4页
第4页 / 共49页
毕业设计(论文)-基于PLC的高楼恒压供水系统设计.doc_第5页
第5页 / 共49页
点击查看更多>>
资源描述

1、毕业设计报告(论文)报告(论文)题目: 基于PLC的高楼恒压供水系统的设计 作者所在系部: 机械工程系 作者所在专业: 测控技术与仪器 作者所在班级: 作 者 姓 名 : 作 者 学 号 : 指导教师姓名: 完 成 时 间 : 2012.6 北华航天工业学院教务处制北华航天工业学院毕业论文目 录摘要ABSTACT第一章 绪论11.1 引言11.2 本课题产生的背景和意义21.3 变频恒压供水的现况21.3.1 国内外变频供水系统现状21.3.2 变频供水系统应用范围31.4 本论文的主要工作3第二章 变频恒压供水的理论分析42.1 水泵的工作原理42.2 供水电机的搭配42.3 水泵的调节方式

2、52.4 恒压供水系统的能耗分析52.5 供水系统的安全性问题72.5.1 水锤效应72.5.2 水锤效应的产生原因72.5.3 水锤效应的消除82.5.4 延长水泵寿命的其他因素8第三章 变频恒压供水控制系统硬件的设计93.1 变频恒压供水控制系统的构成方案93.2 变频恒压供水系统的控制方案93.3 供水设备的选择原则113.4 参数的计算与供水设备选型133.4.1 水泵的参数计算与型号的选择133.4.2 变频器的选择133.4.3 压力传感器的选择153.4.4 水位传感器的选择153.4.5 其他低压电器的选择153.5 PLC的选型163.5.1 I/O点的统计163.5.2 P

3、LC选型的基本原则173.5.3 I/O的分配173.6 系统硬件线路设计183.7 PID调节193.7.1 PID控制原理和特点193.7.2 PID参数的预置20第四章 变频恒压供水控制系统软件的设计224.1 编程软件的简单介绍224.2 恒压供水系统程序的设计234.2.1梯形图的设计234.3 程序的仿真与调试284.3.1 仿真软件的简介294.3.2 恒压供水系统程序的仿真调试29第五章 总结与期望335.1 总结335.2 展望33参考文献34致 谢36附 录37语句表37 第一章 绪论1.1 引言水是生命之源,人类生存和发展都离不开水。在通常的城市及乡镇供水中,基本上都是靠

4、供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。我国供水机泵的特点是数量大、范围广、类型多,在工程规模上也有一定水平,但在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。随着社会经济的迅速发展,人们对供水质量和供水系统的可靠性要求不断提高。衡量供水质量的重要标准之一是供水压力是否恒定,因为水压恒定于某些工业或特殊用户是非常重要的,如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,会造成更大的

5、经济损失或人员伤亡.但是用户用水量是经常变动的,因此用水和供水之间的不平衡的现象时有发生,并且集中反映在供水的压力上:用水多而供水少,则供水压力低;用水少而供水多,则供水压力大。保持管网的水压恒定供水,可使供水和用水之间保持平衡,不但提高了供水的产量和质量,也确保了供水生产以及电机运行的安全可靠性。变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用。利用变频技术与自动控制技术相结合,在中小型供水企业实现恒压供水,不仅能达到比较明显的节能效果,提高供水企业的效率,更能有效保证从水系统的安全可靠运行.变频 恒 水 压供水系统集变频技术、电

6、气传动技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时可达到良好的节能性,提高供水效率。所以设计基于变频调速的恒定水压供水系统(简称变频恒压供水,如图1.2),对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。 图1-1 传统供水机示意图 图1-2 变频供水机示意图1.2 本课题产生的背景和意义我国长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,工业自动化程度低。传统调节供水压力的方式,多采用频繁启/停电机控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷

7、造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。1.3 变频恒压供水的现况1.3.1 国内外变频供水系统现状变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。目前国外的恒压供水系统变频器成熟可靠,恒压控制技术先进。国外变频供水系统在设计时主要采用一台变频器只带一台水泵

8、机组的方式。这种方式运行安全可靠,变压方式更灵活。此方式的缺点必是电机数量和变频的数量一样多,投资成本高。目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC 或PID调节器实现恒压供水,在小容量、控制要求低的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。但在大功率大容量变频器上,国产变频器有待于进一步改进和完善。1.3.2 变频供水系统应用范围变频恒压供水系统在供水行业中的应用,按所使用的范围大致分为三类:(1) 小区供水(加压泵站)变频恒压供水系统这类变频供水系统主要用于包括工厂、小

9、区供水、高层建筑供水、乡村加压站,特点是变频控制的电机功率小,一般在135kW以下,控制系统简单。由于这一范围的用户群十分庞大,所以是目前国内研究和推广最多的方式。(2) 国内中小型供水厂变频恒压供水系统这类变频供水系统主要用于中小供水厂或大中城市的辅助供水厂。这类变频器、电机功率在135kV320kW之间,电网电压通常为220V或380V。受中小水厂规模和经济条件限制,目前主要采用国产通用的变频恒压供水变频器。(3) 大型供水厂的变频恒压供水系统这类变频供水系统用于大中城市的主力供水厂,特点是功率大(一般都大于320kW)、机组多、多数采用高压变频系统。这类系统一般变频器和控制器要求较高,多

10、数采用了国外进口变频器和控制系统。目前,国内除了高压变频供水系统,多数变频供水系统均声称只要改变容量就可以通用于各种供水范围,但在实际运用中,不同供水环境对变频器的要求和控制方式是不一致的,大多数变频器并不能真正实现通用。所以在部分条件复杂的中小水厂,采用通用的恒压供水变频系统并不能完全满足实践要求,现部分中小水厂已认识到这一情况,并针对实际情况对变频恒压供水系统加以改进和完善。1.4 本论文的主要工作本课题主要通过研究PLC来控制变频器实现恒压供水,通过设计了解并熟悉了PLC的工作原理、编程原理以及编程方法。进行了控制系统的主电路设计、控制电路设计,系统的控制设备选用S7-200系列的PLC

11、(CPU222),变频器选用西门子泵类专用的变频器MM430。进行了控制程序(梯形图)的设计。在控制过程中,电控系统由S7-200完成,PID控制由变频器完成。最后,对变频恒压供水系统进行调试,对该系统在供水中所取得的节约电耗、恒定压力、保护管网等进行了总结,指出变频技术在供水领域所取得的成果及局限性。第二章 变频恒压供水的理论分析2.1 水泵的工作原理供水所用水泵主要是离心泵,普通离心泵如图2.1所示,叶轮安装在泵2内,并紧固在泵轴3上,泵轴由电机直接带动,泵壳中央有一液体吸入口4与吸入管5连接,液体经底阀6和吸入管进入泵内,泵壳上的液体排出口8与排出管9连接。在泵启动前,泵壳内灌满被输送的

12、液体:启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。图2-1 离心泵结构示意图2.2 供水电机的搭配 供水电机驱动离心泵运行,和离心泵共同组成了供水系统的整体,电机的配置主要以水泵供水负载来决定。电动机的功率应根据生产机械

13、所需要的功率来选择,尽量使电动机在额定负载下运行。选择时应注意以下两点:(1) 如果电动机功率选得过小,就会出现“小马拉大车”现象,造成电动机长期过载,使其绝缘因发热而损坏,甚至电动机被烧毁。(2) 如果电动机功率选得过大,就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利,而且还会造成电能浪费。因此,要正确选择电动机的功率, 对恒定负载连续工作方式,如果知道负载的功率(生产机械轴上的功率)p1(kW),可按式(2.1)计算所需电动机的功率p(kW): (2-1)式中,1为生产机械的效率,2为电动机的效率,即传动效率。按上式求出的功率,不一定

14、与产品功率相同。因此,所选电动机的额定功率应等于或稍大于计算所得的功率。2.3 水泵的调节方式水泵的调速运行,是指水泵在运行中根据运行环境的需要,人为的改变运行工作状况点(简称工况点)的位置,使流量、轴功率等运行参数适应新的工作状况的需要。水泵的调节方式与节能的关系非常密切,过去普遍采用改变阀门或挡板开度的节流调节方式,即改变装置管网的特性曲线进行调节。大量的统计调查表明,一些在运行中需要进行调节的水泵,其能量浪费的主要原因,往往是由于采用不合适的调节方式。因此,研究并设计它们的调节方式,是节能最有效的途径和关键所在。水泵的调节方式可分为恒速调节与变速调节。详细划分如下:2.4 恒压供水系统的

15、能耗分析在供水系统中,最根本的控制对象是流量。因此,要讨论节能问题,必须从考察调节流量的方法入手。常见的方法有阀门控制法和转速控制法两种。供水系统中对水压流量的控制,传统上采用阀门调节实现。由于水泵的轴功率与转速的立方成正比,因此水泵用变频器来调节转速能实现压力或流量的自动控制,同时可获得大量节能。闭环恒压供水系统正越来越多地取代高位水箱、水塔等设施及阀门调节。(1) 阀门控制法:通过关小或开大阀门来调节流量,而转速保持不变。阀门控制法的实质是水泵本身的供水能力不变,而是通过改变水路中的阻力大小来强行改变流量,以适应用户对流量的要求。这时,管阻特性将随阀门开度的改变而改变,但是扬程特性不变。如

16、图 2-3所示,设用户所需流量QX为额定流量的60%(即QX=60%QN)。当通过关小阀门来实现时,管阻特性将改变为曲线,而扬程特性则仍为曲线,故供水系统的工作点移至E点,这时,流量减小为QE(=Qx);扬程增加为HE;供水功率PC与面积ODEJ成正比。 图2-3 调节流量的方法与比较(2) 恒压控制法:即通过改变水泵的转速来调节流量,而阀门开度保持不变,也称为转速控制法。转速控制法的实质是通过改变水泵的供水能力来适应用户对流量的要求。当水泵的饿转速改变时,扬程特性将随之改变,而管阻特性不变。以用户所需流量等于60%Qn为例,当通过降低转速使得Qx=60%Qn时,扬程特性仍为曲线,故工作点移向

17、C点。这时流量减小为QE(=Qx),扬程减小为Hc,供水功率PC与面积0DCK成正比。比较上述两种调节流量的方法可以看出,在所需流量小于额定流量(Qx用水需求QU,则压力上升(P);如:供水能力QG用水需求QU,则压力上升(P);如:供水能力QG=用水需求QU,则压力上升(P不变)。可见,供水能力与用水需求之间的矛盾具体地反映在流体压力的变化上。从而,压力就成为了用来作为控制流量大小的参变量。就是说,保持供水系统中某处的压力的恒定,也就保证了使该处的供水能力和用水流量处于平衡状态,恰到好处地满足了用户所需的用水流量,这就是恒压供水所要达到的目的。2.5 供水系统的安全性问题2.5.1 水锤效应

18、异步电动机在全电压启动时,从静止状态加速到额定转速所需要的时间只有在0.25S。这意味着在0.25S的时间里,水的流量从零增到额定流量。由于水具有动量和不可压缩性,因此,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,并产生空化现象。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管子一样,故称为水锤效应。水锤效应具有极大的破坏性,压强过高,将引起管道的破裂,反之,压强过低又会导致管道的瘪塌。此外,水锤效应也可能破坏阀门和固定件。在直接停机时,供水系统的水头将克服电动机的惯性而使系统急剧地停止。这也同样会引起压力冲击和水锤效应。2.5.2 水锤效应的产生原因产生水锤效应的根本原因,是

19、在启动和制动过程中的动态转矩太大.在启动过程中,异步电动机和水泵的机械特性如图2-4a所示,图中曲线1是异步电动机的机械特性,曲线2是水泵的机械特性,阴影部分是动态转矩TJ(即两者之差)。 (a)全压启动 (b)变频启动图2-4 水泵的全压启动与变频启动在拖动系统中,决定加速过程的是动态转矩TJ TJ=TM-TL 由图2-4a可知,水泵在直接启动过程中,拖动系统动态转矩写的大小如阴影部分所示,是很大的。所以,加速过程很快。2.5.3 水锤效应的消除采用了变频调速后,可以通过对升速时间的预置来延长启动过程,使动态转矩大为减小,如图2-4b命所示。图中,曲线簇1是异步电动机在不同频率下的机械特性,

20、曲线2是水泵的机械特性,中间的锯齿状线是升速过程中的动态转矩(即不同频率时电动机机械特性与水泵机械特性之差)。在停机过程中,同样可以通过对降速时间的预置来延长停机过程,使动态转矩大为减小,从而彻底消除了水锤效应。2.5.4 延长水泵寿命的其他因素水锤效应的消除,无疑可大大延长水泵及管道系统的寿命。此外,由于水泵平均转速下降、工作过程中平均转矩减小的原因,使:(1) 叶片承受的应力大为减小。(2) 轴承的磨损也大为减小。所以,采用了变频调速以后,水泵的工作寿命将大大延长。第三章 变频恒压供水控制系统硬件的设计3.1 变频恒压供水控制系统的构成方案从变频恒压供水的原理分析可知,该系统主要有压力传感

21、器、压力变送器、变频器、恒压控制单元、水泵机组以及低压电器组成。系统主要的设计任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。根据系统的设计任务要求,结合系统的使用场所,本次设计才用通用变频器+PCL(包括变频控制、调节器控制)+人机界面+压力传感器的构成方案。系统的构成框图如图3.1所示。图3-1 系统构成框图这种控制方式灵活方便。具有良好的通信接口,可以方便地与其他的系统进行数据交换;通用性强,由于PLC产品的系列化和模块化,用户可灵活组成各规模和要求不同控制系统。在硬件设计上,只

22、需确定PLC的硬件配置和变频器的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。同时由于PLC的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。因此该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关。3.2 变频恒压供水系统的控制方案变频恒压供水系统的控制方案有多种,有1台变频器控制一台水泵的简单控制方案,也有一台变频器控制几台水泵的方案,下面重点介绍一台变频器控制几台水泵的特点。利用单台变频器控制多台水泵的控制方案适用于大多数供水系统,是目前应用中比较先进的一种方案。下面以单台变频器控制2台水泵的方案来说明。该控制方案的控

23、制原理如图3-2所示。1号泵变频运行2号泵停止2号泵变频运行1号泵工频运行2号泵变频运行1号泵停止1号泵变频运行2号泵工频运行图3-2 控制原理框图 控制系统的工作原理如下:根据系统用水量的变化,控制系统控制2台水泵按12341的顺序运行,以保证正常供水。开始工作时,系统用水量不多,只有1号泵在变频器控制下运行,2号泵处于停止状态,控制系统处于状态1。当用水量增加,变频器输出频率增加,则1号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作己不能满足系统用水的要求,此时,通过控制系统,1号泵从变频器电源转换到普通的交流电源,而变频器电源启动2号泵电机,控制系统处于状态2。当

24、系统用水高峰过后,用水量减少时,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统用水的要求,此时,通过控制系统,可将1号泵电机停运,2号泵电机仍由变频器电源供电,这时控制系统处于状态3。当用水量再次增加,变频器输出频率增加,则2号泵电机的转速也增加,当变频器增加到最高输出频率时,表示只有1台水泵工作已不能满足系统用水的要求,此时,通过控制系统的控制,2号泵从变频器电源转换到普通的交流电源,而变频器电源启动1号泵电机,控制系统处于状态4。当控制系统处于状态4时,用水量减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统供水的要求,此时,通过控制系统的

25、控制,2号泵从变频器电源转换到普通的交流电源,而变频器启动1号泵电机,控制系统处于状态4。当控制系统处于状态4时,用水量又减少,变频器输出频率减少,若减至设定频率时,表示只有1台水泵工作已能满足系统用水的要求,此时,通过控制系统的控制,可将2号泵电机停运,1号泵电机仍由变频器供电,这时,控制系统又回到了状态1。如此循环往复的工作,以满足系统用水的需要。3.3 供水设备的选择原则在做供水系统时,应先选择水泵和电机,选择依据是供水规模(供水流量)。而供水规模和住宅类型以及用户数有关。有关选择依据原则使用表格如下。1. 不同住宅类型的用水标准。不同住宅类型的用水标准,根据城市居民生活用水标准GB/T

26、 50331-2002,节录如表3-1。表3-1 不同住宅类型的用水标准住宅类型给水卫生器具完善程度用水标准(/人日)小时变化系数1仅有给水龙头0.040.082.52.02有给水卫生器具,但无淋浴设备0.0850.132.52.03有给水卫生器具,并有淋浴设备0.130.192.51.84有给水卫生器具,但无淋浴设备和集中热水供应0.170.252.01.6 2. 供水规模换算表。不同住宅类型的用水标准,根据城市居民生活用水标准GB/T 50331-2002,节录如表3.2。上面一行为用水标准(m3/人日),中间数据为用水规模(m3/h)。表3-2 供水规模换算表户数用水标准(m3/人日)0

27、.100.150.200.2545039.4059.0078.7098.4050043.8065.6087.50109.4060052.5078.80105.00131.3070061.3091.90122.50153.1080070.00105.00140.00175.00100087.50131.30175.00218.803. 根据供水量和高度确定水泵型号和台数,并对电动机进行选型,见表3-3。表3-3 水泵、电机和变频器选型表50xN4080LG50-20x211116080LG50-20x315158080LG50-20x418.518.510080LG50-20x522221208

28、0LG50-20x63030100xN40100DL218.518.560100DL3303080100DL43737100100DL54545120100DL65555注:N为水泵台数 4. 设定供水压力经验数据:平方供水压力P=0.12MPa;楼房供水压力P=(0.08+0.04楼层数)MPa (3-1) (5)系统设计还应遵循以下的原则: 蓄水池容量应大于每小时最大供水量; 水泵扬程应大于实际供水高度; 水泵流量总和应大于实际最大供水量。3.4 参数的计算与供水设备选型3.4.1 水泵的参数计算与型号的选择 (1) 根据表3.1确定用水量标准为0.19m3/人日。 (2) 根据表3.2确

29、定每小最大用水量为175.00m3/h。 (3) 根据10层楼高度35m,按照式(3-1)计算得 P =(0.08+0.04楼层数)MPa=0.48MPa 可确定设置供水压力值为0.48MPa。根据表3-3确定水泵型号为100DL3,共3台(其中一台做备用),水泵自带电动机功率为30kW。3.4.2 变频器的选择 本系统中 ,采用MciorMaster430系列变频器,型号为HVAC(风机和水泵节能型)EC014500/3,额定电压为380V500V,额定功率35kW。MicroMaster430系列变频器是全新一代标准变频器中的风机和泵类变转矩负载专家,功率范围7.5kW至250Kw。它按照

30、专用要求设计,并使用内部功能互联(BiCo)技术,具有高度可靠性和灵活性,牢固的EMC(电磁兼容性)设计;控制软件可以实现专用功能:多泵切换、手动/自动切换、旁路功能、断带及缺水检测、节能运行方式等。1. MM430变频器介绍MciorMaster430变频器的端子接口分布如图3-3所示。图3-3 MM430 端子接口分布图2. 端子功能介绍各端子的功能如表3-4所示。表3-4 端子功能表引脚序号引脚名称功能引脚序号引脚名称功能1+10V电源电压12AOUT1+模拟输出12013AOUT1-3AIN1+模拟输入114PTCA4AIN1-15PTCB5DINN1数字输入16DIN5数字输入6DI

31、NN217DIN67DINN326AOUT2+模拟输出28DINN427AOUT2-9+24V电源电压28PERS-48510AIN2+模拟输入229P+11AIN2-30P-18RL1-A输出继电器的触头22RL2-C输出继电器的触头19RL1-B23RL3-A20RL1-C24RL3-B21RL2-B25RL3-C3.4.3 压力传感器的选择CYYB-120系列压力变送器为两线制420mA电流信号输出产品。它采用CYYB-105系列压力传感器的压力敏感元件。经后续电路给电桥供电,并对输出信号进行放大、温度补偿及非线性修正、V/I变换等处理,对供电电压要求宽松,具有420mA标准信号输出。一

32、对导线同时用于电源供电及信号传输,输出信号与环路导线电阻无关,抗干扰性强、便于电缆铺设及远距离传输,与数字显示仪表、A/D转换器及计算机数据采集系统连接方便。CYYB-120系列压力变送器新增加了全密封结构带现场数字显示的隔爆型产品。可广泛应用于航空航天、科学试验、石油化工、制冷设备、污水处理、工程机械等液压系统产品及所有压力测控领域。主要特点:(1)高稳定性、高精度、宽的工作温度范围;(2)抗冲击、耐震动、体积小、防水;(3)标准信号输出、良好的互换性、抗干扰性强;(4)最具有竞争力的价格。3.4.4 水位传感器的选择SL980-投入式液位变送器,广泛用于储水池、污水池、水井、水箱的水位测量

33、,油池、油罐的油位测量,江河湖海的深度测量。接受与液体深度成正比的液压信号,并将其转换为开关量输出,送给计算机、记录仪、调节仪或变频调节系统以实现液位的全自动控制。主要特点是:安装简单,精度高,可靠性高,性能稳定,能实现自身保护等。3.4.5 其他低压电器的选择1. 断路器的选择(1)QF2 和 QF3 选择。 断路器具有隔离,过电流及欠电压等保护功能,当变频器的输入侧发生短路或电源电压过低等故障时,可迅速进行保护。考虑变频器允许的过载能力为150%,时间为1min。所以为了避免误动作,断路器QF2 的额定电流应选 (A) (3-2)式中In为变频器的额定输出电流所以QF2,QF3 选90A。

34、 (2) 断路器QF1选择。在电动机要求实现工频和变频切换驱动的电路中,断路器应按电动机在工频下起动电流来考虑,断路器QF1的额定电流Iqn应选 (A) (3-3)式中为电动机的额定电流,=60A。所以QF1选160A。 2. 接触器的选择接触器的选择应考虑到电动机在工频下的起动情况,其触点电流通常可按电动机的额定电流再加大一个档次来选择,由于电动机的额定电流为60A,所以接触器的触点电流选70A即可。3.5 PLC的选型3.5.1 I/O点的统计恒压变频供水控制系统的输入输出点的统计如表3-5所示。表3-5 I/O统计表输入器件输出器件编号符号名称编号符号名称1SB1启动1KM11#泵变频2

35、SB2停止2KM22#泵变频3S1液位传感器3KM31#泵工频4S2变频器达到上限4KM42#泵工频5S3变频器达到下限5KM5备用泵工频6S41#水泵故障6L1报警指示灯7S52#水泵故障8SS6变频器故障3.5.2 PLC选型的基本原则这是PLC应用设计中很重要的一步,目前,国内外生产的PLC种类很多,在选用PLC时应考虑以下几个方面。(1)规模要适当;(2)功能要相当,结构要合理;(3)输入,输出功能及负载能力的选择要正确;(4)要考虑环境条件。根据以上原则,这次设计选择西门子S7-200系列的CPU222AC/DC。3.5.3 I/O的分配根据功能要求和工艺流程,我们统一了I/O接点的

36、分配,分配表如表3.6所示。根据PLC口的分配,系统的控制要求以及合理利用I/O口的原则。表3-6 I/O分配表输入器件输出器件I0.0启动(SB0)Q0.0驱动KM1(1#泵变频)I0.1停止(SB1)Q0.1驱动KM2(2#泵变频)I0.2液位传感器Q0.2驱动KM3(1#泵工频)I0.3变频器达到上限Q0.3驱动KM4(2#泵工频)I0.4变频器达到下限Q0.4驱动KM5(备用泵工频)I0.51#水泵故障Q0.5报警指示灯I0.62#水泵故障I0.7变频器故障3.6 系统硬件线路设计 供水系统主电路设计如图3.4所示,采用了一台变频器同时连接两台电动机,所以必须确保开关KM1和KM2电气

37、连锁,连锁功能由软件和硬件实现。在变频水泵出现问题或紧急情况下,可以起用备用水泵。 图3-4 主电路图系统的控制线路如图3-5所示。图3-5 控制线路图3.7 PID调节3.7.1 PID控制原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完

38、全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Er

39、ror)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前

40、”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。3.7.2 PID参数的预置由于SIEMENS MM430变频器自带了PID模块,我们不需要进行PID调节器的设计,只需进行简单的参数设置就可以了。首先将设置模拟输入的DIP开关1拨到ON位置,选择为420mA输入,

41、将DIP开关2拨到OFF位置选择电动机的频率,OFF位置为50Hz。其它参数的设置如表3.7所示。表3-7 MM430参数预置表参数名称参数名称P0003=2用户访问级别为专家级P2255=100PID的增益系数P0004=22参数滤过,选择PID应用宏P2256=100PID微调信号的增益系数P0700=2选择命令源,选择为端子控制P2257=10SPID设定值的斜坡加速时间P1000=2频率设定选择为模拟设定值P2258=10SPID设定值的斜坡减速时间P1080=5Hz最小频率R2260=100%显示PID的总设定值P1082=50Hz最大频率R2261=3SPID设定值的滤波时间常数P

42、2200=1闭环控制选择,PID功能有效R2262=100%显示滤波后的PID设定值P2231=1允许存储P2240的设定值P2265=3SPID反馈立场拨时间常数P2240=75%键盘给定的PID设定值P2267=100PID反馈信号的上限值P2253=2250:0选择P2240的值作为PID给定P2268=0PID反馈信号的下限值P2250=100%显示P2240的设定值输出P2269=100%PID反馈信号的的增益P2254=0.0缺省值,对微调信号没有选择P2291=100PID输出的上限P2292=0.00PID输出的下限P2280=3.00PID的比例增益系数P2285=7.00SPID的微分时间

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服