1、七年级下册数学期中试题及答案解答完整一、选择题1100的算术平方根是()A100BCD102下列图形中,可以由其中一个图形通过平移得到的是()ABCD3若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为( )A(4,3)B(4,3)C(3,4)D(3,4)4下列五个命题:如果两个数的绝对值相等,那么这两个数的平方相等;一个三角形被截成两个三角形,每个三角形的内角和是90度;在同一平面内,垂直于同一条直线的两条直线互相平行;两个无理数的和一定是无理数;坐标平面内的点与有序数对是一一对应的其中真命题的个数是( )A2个B3个C4个D5个5如图,直线,点分别在直线上,P为
2、两平行线间一点,那么等于( )ABCD6若,则的值是( )A1B-3C1或-3D-1或37在同一个平面内,为50,的两边分别与的两边平行,则的度数为( )A50B40或130C50或130D408在平面直角坐标系中,点A(1,0)第一次向左跳动至A1(1,1),第二次向右跳至A2(2,1),第三次向左跳至A3(2,2),第四次向右跳至A4(3,2),按照此规律,点A第2021次跳动至A2021的坐标是( )A(1011,1011)B(1011,1010)C(1010,1010)D(1010,1009)二、填空题9的算术平方根为_10已知点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,
3、那么a+b_11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.12已知ab,某学生将一直角三角板如图所示放置,如果130,那么2的度数为_13把一张长方形纸条按如图所示折叠后,若,则_;14对于这样的等式:若(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,则32a0+16a18a2+4a32a4+a5的值为_15已知点、,点P在轴上,且的面积为5,则点P的坐标为_16如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动即(0,0)(0,1)(1,1)(1,0),那么
4、第42秒时质点所在位置的坐标是_三、解答题17计算: (1) (2)18求下列各式中x的值:(1)(2)19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC20如图,在平面直角坐标系中,已知P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a+6,b+2)(1)请画出上述平移后的A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出
5、以A,C,A1,C1为顶点的四边形的面积21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗?事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即,的整数部分为2,小数部分为请解答:(1)的整数部分是_ ,小数部分是_ (2)如果的小数部分为,的整数部分为,求的值22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1
6、)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由23已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)24如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-A
7、BD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值【
8、参考答案】一、选择题1D解析:D【分析】根据算术平方根的定义求解即可求得答案【详解】解:102=100,100算术平方根是10;故选:D【点睛】本题考查了算术平方根的定义注意熟记定义是解此题的关键2C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图
9、形与原图形全等是解答此题的关键3A【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可【详解】点P在x轴的下方,y轴的右方,点P在第四象限,又点P到x轴、y轴的距离分别是3和4,点P的横坐标是4,纵坐标是-3,即点P的坐标为,故选:A【点睛】本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离4B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可【详解】解:如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假
10、命题;在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;两个无理数的和不一定是无理数,是假命题;坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是,个数是3故选:【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键5A【分析】过点P作PEa则可得出PEab,结合“两直线平行,内错角相等”可得出2=AMP+BNP,再结合邻补角的即可得出结论【详解】解:过点P作PEa,如图所示PEa,ab,PEab,AMP=MPE,BNP=NPE,2=MPE+NPE=AMP+BNP1+AMP=180,3+BNP=1
11、80,1+2+3=180+180=360故选:A【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出2=AMP+BNP本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键6C【分析】根据题意,利用平方根,立方根的定义求出a,b的值,再代入求解即可【详解】解:,当时,;当时,故选:C【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a,b的值是解此题的关键7C【分析】如图,分两种情况进行讨论求解即可【详解】解:如图所示,ACBF,ADBE,A=FOD,B=FOD,B=A=50;如图所示,ACBF,ADBE,A=BOD,B+BOD=180,B
12、+A=180,B=130,故选C【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解8A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可【详解】解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,
13、3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A2021的坐标是(1011,1011)故选:A【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键二、填空题94【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16
14、,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别.10-3【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变据此可得a,b的值【详解】解:点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,解得,a+b解析:-3【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变据此可得a,b的值【详解】解:点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,解得,a+b3,故答案为:3【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键1110或40;【分析】首先根据三角形的内角和定理
15、求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30
16、=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数1260【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab解析:60【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab,4=3=30,5=180490=60,2=5=60故答案为:60【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握
17、上述基础知识是解题关键1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键14-
18、1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+解析:-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,a01,a15,a210,a310,a45,a51,把a01,a15,a210,a310,a45,a51代入32a0+16a18a2+4a32a4+a5中,可得:32a0+16a18a2+4a32a4+a532+8080+40
19、10+11,故答案为:1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.15(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意: |1-m|2=5,m=-4或6,P(-4解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意: |1-m|2=5,m=-4或6,P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数
20、构建方程解决问题16(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+48秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+615秒,以此类推到(4,0)用了16秒,到(0,4)用
21、了16+824秒,到(0,5)用了25秒,到(5,0)用了25+1035秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键三、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合
22、并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键18(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:解析:(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键19(1)FDE,两直线平行,内错角
23、相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直
24、线平行 (2)证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解20(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应点P1(a+6,b+2)可分别解析:(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对
25、应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积【详解】解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:由图象可得;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)连接,如图所示:点,点在同一条直线上,且与x轴平行,【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键21(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即
26、45的整数部分为4,小数部分为4(2),解析:(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即45的整数部分为4,小数部分为4(2),【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,
27、由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长23(1)见解析;(2)55;(3)【分析】(1)根
28、据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图解析:(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟
29、练掌握平行线的判定与性质24(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=
30、2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外
31、角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要