1、呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案一、选择题1的平方根是()A2BCD2在下列图形中,不能通过其中一个三角形平移得到的是( )ABCD3在平面直角坐标系中有四个点,其中在第一象限的点是( )ABCD4下列命题中:若,则点在原点处;点一定在第四象限已知点与点,m,n均不为0,则直线平行x轴;已知点A(2,-3),轴,且,则B点的坐标为(2,2)以上命题是真命题的有( )A1个B2个C3个D4个5如图,P为平行线之间的一点,若,CP平分ACD,则BAP的度数为( )ABCD6下列说法中,正确的是()A(2)3的立方根是2B0.4的算术平方根是0.2C的立方根是4D16的
2、平方根是47如图,已知,平分,则的度数是( )ABCD8如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),根据这个规律探索可得,第20个点的坐标为( )A(6,4)B(6,5)C(7,3)D(7,5)二、填空题9已知,则xy=_10若与点关于轴对称,则的值是_;11如图,直线与直线交于点,、是与的角平分线,则_度12如图,已知a/b,150,2115,则3_13如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若EFG=54,则EGB=_14观察
3、下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为_15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_16如图,在平面直角坐标系中,边长为1的等边OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将OA1A2沿x轴正方向依次向右移动2个单位,依次得到A3A4A5,A6A7A8,则顶点A2021的坐标为 _三、解答题17计算下列各式的值:(1)|2| + (1)2021;(2)18求下列各式中的:(1);(2);(3)19完成下面的证明:如图,点、分别是三角形的边、上的点,连接,连接交于点,求证:证明:(已知)(_)又(已知)(_)(_)(_)
4、20已知点A(2,3),B(4,3),C(1,3)(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标21例如即,的整数部分为2,小数部分为,仿照上例回答下列问题;(1)介于连续的两个整数a和b之间,且ab,那么a ,b ;(2)x是的小数部分,y是的整数部分,求x ,y ;(3)求的平方根二十二、解答题22工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(
5、2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)二十三、解答题23如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由24已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若
6、(n为正整数),直接用含n的代数式表示25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系26【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板A
7、B边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)【参考答案】一、选择题1B解析:B【分析】先计算出,再求出的平方根即可【详解】解:,的平方根是,故选:B【点睛】本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键2D【分析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分
8、析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意故选:D【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键3A【分析】根据各象限内点的坐标特征解答即可【详解】解:在第一象限;在第二象限;在第三象限;在第四象限;故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别
9、是:第一象限;第二象限;第三象限;第四象限4B【分析】利用有理数的性质和坐标轴上点的坐标特征可对进行判断;利用或可对进行判断;利用、点的纵坐标相同可对进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对进行判断【详解】解:若,则或,所以点坐标轴上,所以为假命题;,点一定在第四象限,所以为真命题;已知点与点,均不为0,则直线平行轴,所以为真命题;已知点,轴,且,则点的坐标为或,所以为假命题故选:B【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5A【分析】过P点作P
10、MAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案【详解】解:如图,过P点作PMAB交AC于点MCP平分ACD,ACD68,4ACD34ABCD,PMAB,PMCD,3434,APCP,APC90,2APC356,PMAB,1256,即:BAP的度数为56,故选:A【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键6A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案【详解】解:A(2)3的立方根是2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;C. 的立方根是2,故本选项不符合题意;D.16的平方
11、根是4,故本选项不符合题意;故选:A【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键7B【分析】利用平行线的性质,角平分线的定义即可解决问题【详解】解:,平分,故选:B【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇
12、数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,第列有个数则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为,则第20个数一定在第6列,由下到上是第4个数因而第20个点的坐标是故选:A【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目二、填空题9-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所
13、以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1故答案为:-1【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0101【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y
14、轴对称,得:,解得:,故答案为:【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数1160【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,解析:60【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,EOC=COBAOE=E
15、OC=COB,AOE+EOC+COB=180COB=60,AOD=COB=60,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键1265【分析】根据平行线的性质可得4的度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,解析:65【分析】根据平行线的性质可得4的度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,3241155065故答案为:65【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键13108
16、【分析】由折叠的性质可得:DEF=GEF,根据平行线的性质:两直线平行,内错角相等可得:DEF=EFG=54,从而得到GEF=54,根据平角的定义即可求得1,再由平行线的解析:108【分析】由折叠的性质可得:DEF=GEF,根据平行线的性质:两直线平行,内错角相等可得:DEF=EFG=54,从而得到GEF=54,根据平角的定义即可求得1,再由平行线的性质求得EGB【详解】解:ADBC,EFG=54,DEF=EFG=54,1+2=180,由折叠的性质可得:GEF=DEF=54,1=180-GEF-DEF=180-54-54=72,EGB=180-1=108故答案为:108【点睛】此题主要考查折叠
17、的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出GEF的度数14【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n1,即2n1=11,n=62=21,4=22,8=23,左下角的小正方形中的数字是2n,
18、b=26=64右下角中小正方形中的数字是2n1+2n,a=11+b=11+64=75,a+b=75+64=139故答案为:139【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标(-2
19、,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏16(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循解析:(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循环,每个循环向右移动2个单位202136731,673
20、21346,故顶点A2021的坐标是(1346.5,)故答案为:(1346.5,)【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键三、解答题17(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,解析:(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,316,2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练
21、掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键18(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1解析:(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1),;(2),;(3),或,解得:或【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键19两直线平行,同位角相等;等量代换
22、;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)又(已知)(等量代换)(同位角相等,两直线平行)(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解20(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个
23、点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)A(-2,3),B(4,3),AB=4-(-2)=6;(3)C(-1,-3),C到x轴的距离为3,到直线A
24、B的距离为6;(4)AB=6,C到直线AB的距离为6,;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(解析:(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范
25、围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(2),的小数部分为:,的整数部分为:3;故答案是:;(3),的平方根为:【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出二十二、解答题22(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形
26、的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题二十三、解答题23(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=G解析:(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG
27、=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=
28、4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等24(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和
29、,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2),EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角
30、平分线的有关计算能正确识图,利用角的和差求得相应角的度数是解题关键25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如
31、下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决26DPC=+,理由见解析;(1)70 ;(2) DPC=
32、 ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= -