资源描述
呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案
一、选择题
1.的平方根是()
A.2 B. C. D.
2.在下列图形中,不能通过其中一个三角形平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中有四个点,,,.其中在第一象限的点是( ).
A. B. C. D.
4.下列命题中:
①若,则点在原点处;
②点一定在第四象限
③已知点与点,m,n均不为0,则直线平行x轴;
④已知点A(2,-3),轴,且,则B点的坐标为(2,2).
以上命题是真命题的有( )
A.1个 B.2个 C.3个 D.4个
5.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( )
A. B. C. D.
6.下列说法中,正确的是( )
A.(﹣2)3的立方根是﹣2 B.0.4的算术平方根是0.2
C.的立方根是4 D.16的平方根是4
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )
A.(6,4) B.(6,5) C.(7,3) D.(7,5)
二、填空题
9.已知,则x+y=___________
10.若与点关于轴对称,则的值是___________;
11.如图,直线与直线交于点,、是与的角平分线,则______度.
12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______.
13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______.
14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____.
15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__.
16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________.
三、解答题
17.计算下列各式的值:
(1)|–2|– + (–1)2021;
(2).
18.求下列各式中的:
(1);
(2);
(3).
19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:.
证明:
∵(已知)
∴(_______________)
又∵(已知)
∴(______________)
∴(_____________)
∴(______________)
20.已知点A(-2,3),B(4,3),C(-1,-3).
(1)在平面直角坐标系中标出点A,B,C的位置;
(2)求线段AB的长;
(3)求点C到x轴的距离,点C到AB的距离;
(4)求三角形ABC的面积;
(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.
21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题;
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ;
(2)x是的小数部分,y是的整数部分,求x= ,y= ;
(3)求的平方根.
二十二、解答题
22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
二十三、解答题
23.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.
(1)若点P,F,G都在点E的右侧,求的度数;
(2)若点P,F,G都在点E的右侧,,求的度数;
(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.
24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.
(1)如图①,若平分,求的度数;
(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.
(图1) (图2)
【参考答案】
一、选择题
1.B
解析:B
【分析】
先计算出,再求出的平方根即可.
【详解】
解:∵,
∴的平方根是,
故选:B.
【点睛】
本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键.
2.D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D
解析:D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.
故选:D.
【点睛】
本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.
3.A
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:在第一象限;
在第二象限;
在第三象限;
在第四象限;
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
4.B
【分析】
利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断.
【详解】
解:若,则或,所以点坐标轴上,所以①为假命题;
,点一定在第四象限,所以②为真命题;
已知点与点,,均不为0,则直线平行轴,所以③为真命题;
已知点,轴,且,则点的坐标为或,所以④为假命题.
故选:B.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5.A
【分析】
过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PMAB交AC于点M.
∵CP平分∠ACD,∠ACD=68°,
∴∠4=∠ACD=34°.
∵ABCD,PMAB,
∴PMCD,
∴∠3=∠4=34°,
∵AP⊥CP,
∴∠APC=90°,
∴∠2=∠APC-∠3=56°,
∵PMAB,
∴∠1=∠2=56°,
即:∠BAP的度数为56°,
故选:A.
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.
6.A
【分析】
根据立方根的定义及平方根的定义依次判断即可得到答案.
【详解】
解:A.(﹣2)3的立方根是﹣2,故本选项符合题意;
B.0.04的算术平方根是0.2,故本选项不符合题意;
C. 的立方根是2,故本选项不符合题意;
D.16的平方根是±4,故本选项不符合题意;
故选:A.
【点睛】
此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.
7.B
【分析】
利用平行线的性质,角平分线的定义即可解决问题.
【详解】
解:∵,,平分,
∴,,
∵,
∴,
故选:B.
【点睛】
本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详
解析:A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点作为第一列,和作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为,则第20个数一定在第6列,由下到上是第4个数.
因而第20个点的坐标是.
故选:A.
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
二、填空题
9.-1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
解:由题意得,x-2=0,x2-3y-13=0,
解得x=2,y=-3,
所以,x+y=2+
解析:-1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
解:由题意得,x-2=0,x2-3y-13=0,
解得x=2,y=-3,
所以,x+y=2+(-3)=-1.
故答案为:-1.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.
10.1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题
解析:1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
11.60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴
解析:60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴∠EOC=∠COB
∴∠AOE=∠EOC=∠COB,
∵∠AOE+∠EOC+∠COB=180︒
∴∠COB=60°,
∴∠AOD=∠COB=60°,
故答案为:60
【点睛】
本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.
12.65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.
【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
解析:65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.
【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
∴∠3=∠2﹣∠4=115°﹣50°=65°.
故答案为:65°.
【点睛】
此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.
13.108°
【分析】
由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的
解析:108°
【分析】
由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB.
【详解】
解:∵AD∥BC,∠EFG=54°,
∴∠DEF=∠EFG=54°,∠1+∠2=180°,
由折叠的性质可得:∠GEF=∠DEF=54°,
∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°,
∴∠EGB=180°-∠1=108°.
故答案为:108°.
【点睛】
此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数.
14.【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n
解析:【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,
即2n﹣1=11,n=6.
∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.
∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.
故答案为:139.
【点睛】
本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.
15.(-2,6)或(-2,0).
【分析】
根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.
【详解】
解:由点P(-2,3),PA∥y轴,PA=3,得
在P点
解析:(-2,6)或(-2,0).
【分析】
根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.
【详解】
解:由点P(-2,3),PA∥y轴,PA=3,得
在P点上方的A点坐标(-2,6),
在P点下方的A点坐标(-2,0),
故答案为:(-2,6)或(-2,0).
【点睛】
本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.
16.(1346.5,).
【分析】
观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.
【详解】
解:是等边三角形,边长为1
,,,,…
观察图形可知,3个点一个循
解析:(1346.5,).
【分析】
观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.
【详解】
解:是等边三角形,边长为1
,,,,…
观察图形可知,3个点一个循环,每个循环向右移动2个单位
2021÷3=673…1,
673×2=1346,故顶点A2021的坐标是(1346.5,).
故答案为:(1346.5,).
【点睛】
本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键.
三、解答题
17.(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=
解析:(1)3;(2)–2
【分析】
(1)根据绝对值、立方根、乘方解决此题.
(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.
【详解】
解:(1)原式=,
=3.
(2)原式,
=3+1-6,
=–2.
【点睛】
本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.
18.(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1
解析:(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1)∵,
∴,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴或,
解得:或.
【点睛】
本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.
19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
又∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
∴.(两直线平行,同旁内角互补)
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)
【分析】
(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;
(2)根据两点坐标求出两点的距离即可;
(3)根
解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)
【分析】
(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;
(2)根据两点坐标求出两点的距离即可;
(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;
(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;
(5)根据同底等高的两个三角形面积相等即可求解.
【详解】
解:(1)如图所示,即为所求;
(2)∵A(-2,3),B(4,3),
∴AB=4-(-2)=6;
(3)∵C(-1,-3),
∴C到x轴的距离为3,到直线AB的距离为6;
(4)∵AB=6,C到直线AB的距离为6,
∴;
(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求
∴P(0,-3);
同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);
∴P(0,-3)或(0,9).
【点睛】
本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(
解析:(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(2),
,,
的小数部分为:,
的整数部分为:3;
故答案是:;
(3),
,
的平方根为:.
【点睛】
本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出.
二十二、解答题
22.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
二十三、解答题
23.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G
解析:(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,
①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=x,
∵∠ECD=80°,
∴x+x+x+x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,
∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
24.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵平分,,
∴,
∴,
∴,
∴;
(2)①∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴;
②∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴.
【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.
【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.
【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【问题探究】解:∠DPC=α+β
如图,
过P作PH∥DF
∵DF∥CE,
∴∠PCE=∠1=α, ∠PDF=∠2
∵∠DPC=∠2+∠1=α+β
【问题迁移】(1)70
(图1) ( 图2)
(2) 如图1,∠DPC=β -α
∵DF∥CE,
∴∠PCE=∠1=β,
∵∠DPC=∠1-∠FDP=∠1-α.
∴∠DPC=β -α
如图2,∠DPC= α -β
∵DF∥CE,
∴∠PDF=∠1=α
∵∠DPC=∠1-∠ACE=∠1-β.
∴∠DPC=α - β
展开阅读全文