资源描述
人教版六年级上册数学应用题附答案
1.三名长跑运动员进行赛前训练。小刚跑了4km,小刚跑的等于小震跑的,小涛跑的是小震的。小涛跑了多少千米?
2.有面粉250千克,大米比面粉多,大米比面粉多多少千克?(只列式,不计算。)
3.修一条路全长200米,第一天修了全长的,第二天比第一天修的还多米,第二天修了多少米?
4.水果店运来210筐水果,第一天卖出总数的,第二天卖出余下的。水果店里还剩下多少筐水果?
5.学校要准备一些奖品,需要单价4元的笔记本25本。去哪儿购买合算?
学海商场:按原价的出售
文学超市:购满100元优惠
6.数学课上小强在方格纸上画了一个长10厘米、宽6厘米的长方形,再把这个长方形的长和宽分别增加。
(1)他通过计算发现:新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。于是小强提出猜想:把任意长方形的长和宽分别增加,会不会也有同样的规律呢?
(2)请你举例验证这个规律。
(3)推想:如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
7.一本《十万个为什么》有180页,明明第一天看了总页数的,第二天看的页数是第一天的,明明第二天看了多少页?
8.一个空罐可盛8碗水或6杯水,如果将3碗水和2杯水一起倒入空罐中,水面应该达到整个空罐几分之几的位置?
9.某修路队修一条长320米的公路,其中第一天修了,第二天修的比第一天的还多50米,两天一共修了多少米?
10.某企业助力美丽乡村建设,为和平村修建一条公路。该工程如果由甲工程队单独修,需要15天,如果由乙工程队单独修,需要20天。现由甲、乙两个工程队合修,8天可以修完这条公路吗?
11.某小学举行“我为小伙伴”捐书活动,四年级学生捐书1200本,六年级捐书数是四年级的,五年级的捐书数是六年级的,五年级捐书多少本?
12.学校体育室有120个排球,足球的个数是排球的,篮球的个数是足球的,篮球有多少个?(先画图表示出三种球数量之间的关系,再列式解答)
13.《庄子•天下篇》中有一句话:“一尺之梗,日取其半,万世不竭。”意思就是:一根一尺(尺,中国古代长度单位)长的木棒,今天取它的一半,即,明天取它一半的一半,后天取它一半的一半的一半……这样取下去,永远也取不完。这根木棒是一个长度有限的物体,但它却可以无限地分割下去。假如一根木棒刚好长4米,照这样的取法,第4天取的长度是多少米?
14.学校教导处有800张白纸,第一天用去了,第二天用去的是第一天的,第二天用去多少张白纸?
15.动物园的飞禽馆里有20只孔雀,鸵鸟的只数是孔雀的,金雕的只数是鸵鸟的。金雕有多少只?
16.只列综合算式或方程,不解答。
一个蔬菜大棚共480平方米,其中一半种各种萝卜,已知红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?
17.下图大长方形的面积是平方分米,图中阴影部分的面积是多少平方分米?
18.果园里有桃树120棵,苹果树是桃树的,梨树是苹果树棵数的,梨树多少棵?
19.一个旅游景点去年全年接待游客约196万人,上半年接待游客数是全年的,第三季度接待游客数是上半年的,第三季度接待游客多少万人?
20.珠海市长隆海洋王国2019年上半年接待游客为560万人,下半年游客量是上半年的。2019年长隆海洋王国下半年接待游客多少万人?
21.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?
22.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
23.为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵。五、六年级分别种植了多少棵?
24.甲、乙两站相距不到500千米,A、B两列火车从甲、乙两站相对开出,A车行至210千米处停车,B车行至270千米处停车,这时两车相距的正好是甲、乙两站距离的,甲、乙两站的距离是多少?
25.加工一批零件,由一个人单独做,甲要4小时,乙要5小时,丙要6小时,先由乙做2小时,剩下的由甲、丙两人合作,还要几分钟才能完成?
26.某校六年级学生在青少年科技活动中心参加机器人竞赛,分成甲、乙两个组,甲、乙两组人数比是7∶8,如果从乙组调8人到甲组,则甲、乙两组的人数比是5∶4,参加机器人比赛的一共多少人?
27.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占,后来又来了几名女生?
28.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。
①如果每月通话300分钟,哪一种计费方式更便宜?
②每月通话多少分钟,两种计费方式的通话费正好相等?
29.一份稿件,甲单独打要15分钟完成,乙单独打要10分钟完成,现在甲、乙合打5分钟后,乙有事离开,余下的由甲单独完成,甲打完剩下的稿件需要几分钟?
30.一条公路,甲队独修24天可以完成,乙队独修30天可以完成。先由甲、乙合修3天,再由丙队参加一起修7天后全部完成。如果甲、乙丙三队同时开工修这条公路,几天可以完成?
31.将一堆书本计划全部分给甲、乙、丙三个小朋友。原计划甲、乙、丙三人所得书本数之比为5∶4∶3。实际上,甲、乙、丙三人所得书本数之比为7∶6∶5,其中有一位小朋友比原计划少得了3本书。那么这位小朋友是谁?他实际得到书本是多少本?
32.学校买来一批书,分给高年级后,剩下的按4∶3的比分给中年级和低年级。已知中年级分得240本,这批书一共有多少本?
33.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
34.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙单独做。如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?
35.学习与思考:问题探究。
如图,已知四边形ABCD,E、F 分别为AD、BC 的中点,连接BE、DF,四边形EBFD 与四边形ABCD 的面积之比是多少?
36.甲、乙两车分别从A、B两地同时出发,相向而行,4小时后在距离中点80千米处相遇,甲乙两车的速度比是9∶5,甲每小时行多少千米?
37.某地区要为疫情重灾区运送90吨防控物资,原计划按3∶2分配给甲、乙两个车队。后来,丙队自愿加入帮助运送。物资运完时,甲队少运了原分配任务的,乙队少运了原分配任务的。
(1)按计划,甲队需运送这批物资的,乙队需运送这批物资的。
(2)完成任务时,丙队帮助( )队运送的物质多一些(填上“甲”或“乙”)。请说明理由。
(3)丙队运送多少吨防控物资?
38.甲、乙两人合作制造完成了一批零件,甲乙两人制造零件个数比是4∶3,其中甲制造完成全部零件的还多6个,那么乙制造了多少个零件?
39.甲、乙两个仓库共同储存一批粮食,甲仓库储存的粮食比这批粮食的多10t,乙仓库储存的粮食比这批粮食的少2t,这批粮食一共有多少吨?
40.明明的爸爸去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半少100元,这时他的存折上还有1350元,他存折上原有多少钱?
41.下图是某一次六年级数学测试成绩的扇形统计图,成绩分A、B、C、D四个等级,已知B等比D等少12人。
(1)六年级一共有多少人?
(2)得A等的人数比得B等的多百分之几?
42.如图是某小学六年级学生的视力情况统计图。
(1)近视人数占全年级学生人数的______%,视力不良(包括假性近视和近视)的人数占全年级学生人数的______%。
(2)视力正常的有102人,六年级共有多少人?视力不良的有多少人?
(3)通过上面两小题,面对这个学校六年级学生的视力状况,你有什么想法和好的建议?
43.下图是希望小学六年级全体学生综合素质评价等级统计图。
(1)这是( )统计图。
(2)等级A占全年级人数的( )%,等级C占全年级人数的( )%。
(3)如果六年级共300人,等级B比等级C少多少人?
44.如图中圆的周长是25.12厘米,圆的面积与长方形的面积正好相等,则图中阴影部分的周长是多少厘米?(π取3.14)
45.如图,在墙边A点处栓着一条小狗,绳子的长度为7米,小狗的活动范围是多少平方米?(提示:有困难可以画一画示意图)
46.太极图被称为“中华第一图”。其形状为阴阳两鱼互纠在一起,因而被称为“阴阳鱼太极图”。
(1)请你照样子画一个太极图。(大小自己定)
(2)这样的阴阳鱼是有大小不同的三种圆组成的。若最大的圆的直径是20厘米,最大圆的直径是最小圆直径的10倍,求阴鱼(阴影部分)的面积和周长。
47.下图是学校的运动场。
(1)如果在阴影部分铺塑胶跑道,每平方米100元,则一共花多少钱?
(2)笑笑和淘气分别从A、B出发,沿半圆跑到C、D,笑笑跑内圈,淘气跑外圈,两人跑过的路程差是多少米?
(3)笑笑和淘气同时从内道的相同起点进行同向跑步,淘气的速度是笑笑的120%,从起点出发后淘气第一次追上笑笑需要5分钟,那么笑笑的速度是多少?
48.如图,已知三角形OAB的面积是18平方厘米,求阴影部分的面积.
49.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
50.一个圆形餐桌桌面的直径是2m.
(1)它的面积是多少平方米?
(2)如果在这张餐桌的中央放一个半径是0.8m的圆形转盘,剩下的桌面面积是多少平方米?(结果保留两位小数)
51.李老师要从网络上下载一个容量为54G的文件包,他查了一下电脑D盘和E盘,得到以下信息:
D盘
总容量300G
已用85%
E盘
总容量200G
已用∶未用=7∶3
根据这些信息,你认为应将文件包存在哪个盘中,为什么?(请用数据说明)
52.一张桌子坐6人,两张桌子并起来坐10人,三张桌子并起来坐14人……
(1)照这样,18张桌子并成一排可以坐多少人?
(2)五(2)班有46位同学,需要多少张桌子并起来?
53.探索规律.
用小棒按照如图方式摆图形.
(1)摆1个八边形需要 根小棒,摆2个需要 根小棒,摆3个需要 根小棒.
(2)照这样摆下去:
①摆n个八边形需要多少根小棒?n=1000呢?
②64根小棒可以摆多少个八边形?
54.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?
55.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是( )。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
56.两个非0数a、b,小明为了验证是不是等于,想出了两种办法验证:
(1)例举具体数据进行验证;
(2)用数形结合方法验证:
画一个大正方形,边长是a+b的和,如图,那么大正方形面积边长×边长可以表示为(a+b)×(a+b),也就是。也可以用①②③④四块面积相加求和,看结果是不是等于。
请你分别用上面(1)(2)两种方法来验证:是不是等于。
57.按如下规律摆放三角形,第五堆有多少个三角形?
58.计算1+3+5+7+9+11+…+17+19=( )。
下面是三位同学的解法:
□小刚:1和19相加,3和17相加……一共有5组这样的加法,因此可以列式20×5计算。
□小红:根据我们学过的“数与形”的方法,这是一列从1到19的奇数列相加,可以用“10的平方”计算。
□小丽:假设这列数是1+2+3+4+5+…+19+20,可以列式(1+20)×20÷2-10×(10+1)计算。
(1)你觉得哪些同学的解法正确,在□里画√。
(2)用你喜欢的方法计算下题,请用递等式写出过程。
3+5+7+9+…+19+21
59.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?
60.有苹果、梨、桃、枣四种水果,已知苹果和梨占总重量的,梨和桃占总重量的45%,枣占总重量的30%,又知桃比苹果多42千克。枣有多少千克?
61.工程队修一条公路,第一天修了全长的,第二天修了全长的40%,还剩240m没修,这条公路一共有多少米?
62.甲、乙两个粮仓共储存了3300吨粮食,运走甲粮仓的50%和乙粮仓的后,甲、乙粮仓的存粮量之比为2∶1。甲、乙两个粮仓原来各有粮食多少吨?(提示:如果你觉得有困难,可以画图试一试。)
63.读书节时小明看一本故事书。第一天看了45页,第二天看了全书的,第三天看了全书的20%,这本书一共有多少页?
64.唐僧带着三个徒弟到西天取经,途中八戒摘了一些桃子。他把总数的30%送给了师父,总数的给了悟空和沙僧;最后他数了数剩下的桃子,比给师父的还多7个。贪吃的八戒全留给了自己。请问八戒一共摘了多少个桃子?
65.刘师傅加工一批零件,前3天正好加工了这批零件的60%,第四天又加工了150个,这时已经加工的数量与未加工数量的比是4∶1,这批零件还剩下多少个没有加工?
66.有一款手机原价4500元,现在商店进行降价促销活动。李叔叔是商店降价促销活动时第21位购买该款手机的顾客。他买这款手机实际付了多少钱?
67.一瓶洗衣液,第一周用了总量的,第二周用了总量的20%,还剩2.2升,这瓶洗衣液原有多少升?
68.一台笔记本电脑原价7800元,在商场“店庆促销”活动中,这台电脑降价,降价后这台电脑的售价是多少元。
69.在新农村建设中,家乡要修建一条2000米长水泥路,第一天修了全长的,第二天修了全长的40%,还有多少米没有修?
70.学校买来250本图书,一至四年级分去总数的40%,其余的按3∶2分给五、六年级,六年级分得多少本?
【参考答案】
1.3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点
解析:3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉
解析:250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉多62.5千克。
【点睛】
解答本题必须明确,单位“1”是哪个量,比较量又是谁,然后结合具体题意,按照一定的数量关系列式即可。
3.米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=
解析:米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=(米)
答:第二天修了米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
4.40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1-
解析:40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1--)×210
=×210
=40(筐)
答:水果店里还剩下40筐水果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
5.去文学超市购买合算。
【解析】
学海商场,现在一本的价格=原价,据此求出笔记本的总价;文学超市,先算出25本的总价,便宜了原价的五分之一,据此求出文学超市买需要的钱,再比较即可。
学海商场:4(元)
解析:去文学超市购买合算。
【解析】
学海商场,现在一本的价格=原价,据此求出笔记本的总价;文学超市,先算出25本的总价,便宜了原价的五分之一,据此求出文学超市买需要的钱,再比较即可。
学海商场:4(元)
文学超市:(元)
100-20=80(元)
90>80
答:去文学超市购买合算。
【点睛】
本题考查分数乘法,解答本题的关键是掌握题中的数量关系式。
6.(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来
解析:(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来的几分之几,新长方形的面积是原来长方形的几分之几。
(2)可以假设一个新的长方形,它的长是6厘米,宽是5厘米,根据(1)的思路,来验证这个猜想的正误即可。
(3)根据(1)和(2)可知,长宽各增加后,面积是原来的(1+)×(1+),那么长宽各增加后,面积是原来的(1+)×(1+)。
(1)10×(1+)÷10
=1+
=
6×(1+)÷6
=1+
=
10×(1+)×6×(1+)÷(10×6)
=60×÷60
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。
(2)令一个长方形的长是6厘米,宽是5厘米,那么有:
6×(1+)÷6
=1+
=
5×(1+)÷5
=1+
=
6×(1+)×5×(1+)÷(6×5)
=30×÷30
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的,那么这个猜想是正确的。
(3)(1+)×(1+)
=×
=
所以,如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
【点睛】
本题考查了长方形面积和分数乘法,掌握面积公式,有一定运算能力是解题的关键。
7.20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出
解析:20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出第二天看了的页数。
(页)
答:明明第二天看了20页。
【点睛】
此题的解题关键是根据题意,找到其中的单位“1”,利用它们之间的数量关系,列式求出答案。
8.【解析】
把这个空罐的总高度看作单位“1”,1碗水的高度占总高度的,1杯水的高度占总高度的,用乘法求出3碗水占总高度的分率,2杯水占总高度的分率,最后相加求和。
×3+×2
=+
=
答:水面应该
解析:
【解析】
把这个空罐的总高度看作单位“1”,1碗水的高度占总高度的,1杯水的高度占总高度的,用乘法求出3碗水占总高度的分率,2杯水占总高度的分率,最后相加求和。
×3+×2
=+
=
答:水面应该达到整个空罐的位置。
【点睛】
求出1碗水和3杯水各占总高度的分率是解答题目的关键。
9.200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
解析:200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
=30+50
=80(米)
120+80=200(米)
答:两天一共修了200米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
10.不可以修完
【解析】
根据题意,把这段公路的长度看作单位“1”,甲每天完成,乙每天完成,那么甲、乙两工程队合修的工作效率是,根据工作效率时间工作量,得出8天的工作量,再与单位“1”比较即可。
解析:不可以修完
【解析】
根据题意,把这段公路的长度看作单位“1”,甲每天完成,乙每天完成,那么甲、乙两工程队合修的工作效率是,根据工作效率时间工作量,得出8天的工作量,再与单位“1”比较即可。
答:8天不可以修完这条公路。
【点睛】
此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,根据基本的数量关系“工作量工作效率和工作时间”,解决问题。
11.720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解
解析:720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
12.画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根
解析:画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根据分析画图如下:
120××
=60×
=40(个)
答:篮球有40个。
【点睛】
此题考查的是分数应用题,解题时注意单位“1”。
13.米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
解析:米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
14.125张
【解析】
将白纸总数量看作单位“1”,白纸总数量×第一天用去的对应分率×第二天用去的对应分率=第二天用去的数量。
800××=125( 张)
答:第二天用去125张白纸。
【点睛】
关键是
解析:125张
【解析】
将白纸总数量看作单位“1”,白纸总数量×第一天用去的对应分率×第二天用去的对应分率=第二天用去的数量。
800××=125( 张)
答:第二天用去125张白纸。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
15.12只
【解析】
已知禽馆里有20只孔雀,鸵鸟的只数是孔雀的,根据分数乘法的意义,用乘法即可求出鸵鸟的只数,金雕的只数是鸵鸟的,然后用鸵鸟的只数×=金雕的只数,据此解答即可。
=18×
=12(只
解析:12只
【解析】
已知禽馆里有20只孔雀,鸵鸟的只数是孔雀的,根据分数乘法的意义,用乘法即可求出鸵鸟的只数,金雕的只数是鸵鸟的,然后用鸵鸟的只数×=金雕的只数,据此解答即可。
=18×
=12(只)
答:金雕有12只。
【点睛】
本题考查连续求一个数的几分之几是多少,明确用乘法是解题的关键。
16.480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
解析:480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
=60(平方米)
答:红萝卜地有60平方米。
【点睛】
此题考查的是分数乘法的应用,找准单位“1”,明确单位“1”已知用乘法是解题关键。
17.平方分米
【解析】
把大长方形面积平方分米看作单位“1”,先求出它的是多少,因为阴影部分面积占它的,再乘即可。
由分析得,
××
=×
=(平方分米)
答:图中阴影部分的面积是平方分米。
【点睛】
解析:平方分米
【解析】
把大长方形面积平方分米看作单位“1”,先求出它的是多少,因为阴影部分面积占它的,再乘即可。
由分析得,
××
=×
=(平方分米)
答:图中阴影部分的面积是平方分米。
【点睛】
此题考查的是分数乘法的应用,找准单位“1”,明确单位“1”已知用乘法是解题关键。
18.30棵
【解析】
由题意:先计算苹果树的棵数,是把桃树棵数看作单位“1”;再计算梨树的棵数,是把苹果树的棵数看作单位“1”,列综合算式为:120××。
120××
=90×
=30(棵)
答:梨树有
解析:30棵
【解析】
由题意:先计算苹果树的棵数,是把桃树棵数看作单位“1”;再计算梨树的棵数,是把苹果树的棵数看作单位“1”,列综合算式为:120××。
120××
=90×
=30(棵)
答:梨树有30棵。
【点睛】
本题中存在两个单位“1”,要能够准确区分这两个单位“1”,以及所对应的不同的数量关系。
19.63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
19
解析:63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
196××
=84×
=63(万人)
答:第三季度接待游客63万人。
【点睛】
求一个数的几分之几是多少,用乘法计算。
20.490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键
解析:490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键是找到单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法。
21.25人
【解析】
由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的,增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:5÷(1-),再根据原
解析:25人
【解析】
由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的,增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:5÷(1-),再根据原来男女生的人数比求出原来的女生人数。
5÷(1-)×
=5÷×
=30×
=25(人)
答:原来参加数学竞赛的女生有25人。
【点睛】
找出增加的5名女生是男生的几分之几是解答此题的关键。
22.174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
解析:174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
23.五年级:24棵;六年级:32棵
【解析】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵。
解析:五年级:24棵;六年级:32棵
【解析】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵。
24.千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+
解析:千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+270)÷(1+ )
=480
=432(千米)
不超过 500 千米,满足题意
答:甲乙两站之间的距离是432千米。
25.4分钟
【解析】
解析:4分钟
【解析】
26.90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
解析:90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
27.12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学
解析:12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。
原来男生人数:
(名)
后来学生总数:
(名)
(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
28.①如果每月通话300分钟,第一种通话计费方式便宜
②每月通话200分钟,两种计费方式的通话费正好相等
【解析】
(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;
解析:①如果每月通话300分钟,第一种通话计费方式便宜
②每月通话200分钟,两种计费方式的通话费正好相等
【解析】
(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;再计算出第二种计费方式应交的话费,再比较;
(3)设出通话时间,根据等量关系式:20+通话时间×0. 18=0. 28×通话时间,列方程解答即可。
①20+0.18×300
=20+54
=74(元)
0.28×300=84(元)
84>74
答:如果每月通话300分钟,第一种通话计费方式便宜。
②解:设每月通话分钟,两种计费方式的通话费正好相等
答:每月通话200分钟,两种计费方式的通话费正好相等
【点睛】
此题应通过分析,找出正确的等量关系,进而列式计算得出问题结论。
29.分钟
【解析】
解析:分钟
【解析】
30.天
【解析】
根据公式:工作效率=工作总量÷工作时间,通过题目可知,这条公路是单位“1”,即甲的工作效率:1÷24=,乙的工作效率:1÷30=,由于甲乙两队合修10天,则10天能修:10×(+),之
解析:天
【解析】
根据公式:工作效率=工作总量÷工作时间,通过题目可知,这条公路是单位“1”,即甲的工作效率:1÷24=,乙的工作效率:1÷30=,由于甲乙两队合修10天,则10天能修:10×(+),之后用工作总量减去甲、乙两队合作的量即可求出丙队7天修的工作总量,之后根据公式求出丙队的工作效率;最后用工作总量除以甲、乙、丙的工作率和即可求出多少天可以完成。
1÷24=,1÷30=
=
=
=
=
=
=
=
=(天)
答:天可以完成。
【点睛】
本题主要考查工程问题的公式,熟练掌握工程问题的公式并灵活运用。
31.甲;42本
【解析】
将全部书看作单位“1”,先算出甲、乙、丙三人按原计划和实际所得书本数占全部书的分率,比较前后分率,谁的分率变少,这位小朋友就是谁;用少得的本数÷减少的分率求出总本数,总本数×实
解析:甲;42本
【解析】
将全部书看作单位“1”,先算出甲、乙、丙三人按原计划和实际所得书本数占全部书的分率,比较前后分率,谁的分率变少,这位小朋友就是谁;用少得的本数÷减少的分率求出总本数,总本数×实际所得本数分率=实际得到的本数。
原计划:
甲:5÷(5+4+3)=5÷12=
乙:4÷12=
丙:3÷12=
实际:
甲:7÷(7+6+5)=7÷18=
乙:6÷18=
丙:5÷18=
>,<,甲的分率变小。
3÷(-)
=3÷
=108(本)
108×=42(本)
答:少得3本书的是甲小朋友,他实际得到书本是42本。
【点睛】
关键是理解比意义,确定单位“1”,通过分率的变化确定变少的小朋友,部分数量÷对应分率=整体数量,整体数量×部分对应分率=部分数量。
32.700本
【解析】
用 算出的是分给高年级后剩下的书的本数,420本对应的分率是 ,所以用可求出这批书一共有多少本。
240÷=420(本)
420÷
=420÷
=700(本)
答:这批书一共有7
解析:700本
【解析】
用 算出的是分给高年级后剩下的书的本数,420本对应的分率是 ,所以用可求出这批书一共有多少本。
240÷=420(本)
420÷
=420÷
=700(本)
答:这批书一共有700本。
【点睛】
本题考查按比例分配
展开阅读全文