收藏 分销(赏)

人教版初二数学上册期末试卷附答案.doc

上传人:天**** 文档编号:4880851 上传时间:2024-10-17 格式:DOC 页数:21 大小:1.03MB
下载 相关 举报
人教版初二数学上册期末试卷附答案.doc_第1页
第1页 / 共21页
人教版初二数学上册期末试卷附答案.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
人教版初二数学上册期末试卷附答案 一、选择题 1.下列四个图形中,是中心对称图形且不是轴对称图形的为(       ) A. B. C. D. 2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.数0.00005用科学记数法表示为(       ) A. B. C. D. 3.下列运算中,正确的是(       ) A. B. C. D. 4.要使分式有意义,则的取值应满足(       ) A. B. C. D. 5.下列各式中,从左到右因式分解正确的是(       ) A. B. C. D. 6.分式﹣可变形为(       ) A.﹣ B.﹣ C. D. 7.如图,,在线段,上,且,再添加条件(       ),不能得到 A. B. C. D. 8.关于x的分式方程的解为正数,则m的取值范围是(  ) A.m>2 B.m<2 C.m<2且m≠0 D.m≠0 9.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是(       ) A. B. C. D. 10.如图,D为的外角平分线上一点并且满足,过D作于E,交BA的延长线于F,则下列结论: ①,②,③,④,其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 11.若分式的值为0,则x的值是______. 12.在直角坐标系中,点关于y轴对称点的坐标是___________. 13.如果如果mn=2,mn=-4,那么 的值为________ 14.如果,那么我们规定,例如:因为,所以.若,,,则________. 15.如图,的面积为24,的长为8,平分,E、F分别是和上的动点,则的最小值为____________. 16.若9x2+kx+是一个完全平方式.则k=_____. 17.已知一个n边形的内角和等于,则n=_____ 18.如图,在△ABC中,厘米,厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为______时,能够在某一时刻使与△CQP全等. 三、解答题 19.因式分解: (1);       (2). 20.解下列方程: (1). (2) 21.如图,AC和BD相交于点O,OA=OC,DC∥AB.求证DC=AB. 22.如图,在中,,的外角的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF. (1)若,求的度数; (2)在(1)的条件下,若,求证:; (3)若,探究、有怎样的数量关系,直接写出答案,不用证明. 23.观察下列方程及解的特征: ①的解为:;②的解为:,;③的解为:,;…… 解答下列问题: (1)请猜想,方程的解为_____; (2)请猜想,方程_______的解为,; (3)解关于的分式方程. 24.教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题. 例如:分解因式 求代数式的最小值,. 当时,有最小值,最小值是, 根据阅读材料用配方法解决下列问题: (1)分解因式:__________. (2)当x为何值时,多项式有最大值?并求出这个最大值. (3)若,求出a,b的值. 25.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 26.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 【参考答案】 一、选择题 2.D 解析:D 【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可. 【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意; B、是中心对称图形,也是轴对称图形,故此选项不符合题意; C、是中心对称图形,也是轴对称图形,故此选项不符合题意; D、是中心对称图形,不是轴对称图形,故此选项符合题意, 故选:D. 【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键. 3.A 解析:A 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数. 【详解】0.00005=5×10-5. 故选:A. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值. 4.C 解析:C 【分析】根据合并同类项的法则,同底数幂相乘,同底数幂的除法法则,积的乘方法则分别进行计算即可. 【详解】A.,故A错误; B.,故B错误; C.,故C正确; D.,故D错误. 故选:C. 【点睛】此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,解题的关键是掌握各计算法则. 5.D 解析:D 【分析】根据分式的分母不能为0解答即可. 【详解】由题意可知, ∴ 故选D 【点睛】本题考查分式有意义的条件.掌握分式的分母不能为0是解题关键. 6.D 解析:D 【分析】直接利用公式法以及提取公因式法分解因式进而得出答案. 【详解】解:A、,故原式分解因式错误,不合题意; B、故原式分解因式错误,不合题意; C、,不是因式分解,不合题意; D.,正确. 故选:D. 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键. 7.D 解析:D 【分析】直接利用分式的基本性质将分式变形得出答案. 【详解】解:分式﹣. 故选:D. 【点睛】此题主要考查了分式的基本性质,正确掌握分式的性质是解题关键. 8.D 解析:D 【分析】根据全等三角形的判定定理依次分析判断. 【详解】解:由题意知,AD=AE,∠A=∠A, A、当∠B=∠C时,可利用AAS证明,故正确; B、当时,可得∠ADC=∠AEB,则可利用AAS证明,故正确; C、当AB=AC时,可利用SAS证明,故正确; D、当BE=CD时,根据SSA不能,故错误; 故选:D. 【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键. 9.C 解析:C 【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围. 【详解】解:∵关于x的分式方程的解为正数, ∴且 ∴且 去分母得: 化简得: ∴且 解得:且, 故选:C. 【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键. 10.C 解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b)2 图中的阴影部分面积也可以表示为:a2-2ab+b2 可得:(a-b)2=a2-2ab+b2 故选:C 【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积 11.D 解析:D 【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”可证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,根据三角形内角和是180°和∠AOB=∠COD(设AC交BD于点O),得到∠BDC=∠BAC;根据三角形内角和是180°易得∠DAE=∠CBD,再根据角平分线可得∠DAE=∠DAF,然后求出∠DAF=∠CBD. 【详解】∵AD平分∠CAF,DE⊥AC,DF⊥AB ∴DE=DF 在Rt△CDE和Rt△BDF中 ∴Rt△CDE≌Rt△BDF(HL),故①正确; ∴CE=AF 在Rt△ADE和Rt△ADF中 ∴Rt△ADE≌Rt△ADF(HL) ∴AE=AF ∴CE=AB+AF=AB+AE,故②正确; ∵Rt△CDE≌Rt△BDF ∴∠DBF=∠DCE ∵∠AOB=∠COD(设AC交BD于点O) ∴∠BDC=∠BAC,故③正确; ∵∠BAC+∠ABC+∠ACB=180° ∠BDC+∠DBC+∠DCB=180° ∠DBF=∠DCE ∴∠DAE=∠CBD, ∵∠DAE=∠DAF, ∴∠DAF=∠CBD,故④正确; 综上所述,正确的结论有①②③④. 故选D 【点睛】本题考查了角平分线上的点到角的两边距离相等的性质、全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等. 二、填空题 12.-3 【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】解:由题意可得x+3=0且x-2≠0, 解得x=-3. 故答案为:-3. 【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题. 13.(5,6) 【分析】当两点关于y轴对称时,它们的纵坐标相等,横坐标互为相反数; 【详解】解:点M(-5,6)关于y轴的对称点坐标是(5,6); 故答案为:(5,6). 【点睛】本题考查了轴对称的性质,坐标系中点的特征;掌握对称的性质是解题关键. 14.-3 【分析】先化简分式,然后将m -n=2,mn=-4的值代入计算即可. 【详解】, ∵m -n=2,mn=-4, ∴原式=. 故答案为-3. 【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键. 15. 【分析】由新规定的运算可得,,,再将转化为后,再代入求值即可. 【详解】由于,,,根据新规定的运算可得, ,,, , 故答案为:. 【点睛】本题考查幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键. 16.6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过 解析:6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过点C作,垂足为H,连接、,交于,. ∵的面积为24,的长为8, ∴, ∴, ∵平分, ∴ 又∵,, ∴≌(SAS), ∴, ∴, ∵E、F分别是和上的动点, ∴, ∴ ∴当C、E、共线且点与点H重合时,即,这时的值最小, ∴最小值为6. 故答案为:6. 【点睛】本题考查轴对称—最短路线问题.灵活应用角平分线性质、三角形三边的关系、垂线段最短,将所求最小值转化为求的长是解题的关键. 17.±3 【分析】利用完全平方公式的结构特征判断即可确定出k的值. 【详解】解:有题意知9x2+kx+=(3x=9x2 故k= 故答案为±3. 【点睛】本题考查了完全平方式,熟练掌握完全平方公 解析:±3 【分析】利用完全平方公式的结构特征判断即可确定出k的值. 【详解】解:有题意知9x2+kx+=(3x=9x2 故k= 故答案为±3. 【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 18.5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=5. 故答案为:5. 【点睛】此题主要考查的是多 解析:5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=5. 故答案为:5. 【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键. 19.2或厘米/秒 【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可. 【详解】解: 解析:2或厘米/秒 【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可. 【详解】解:∵AB=10cm,BC=8cm,点D为AB的中点, ∴BD=×10=5cm, 设点P、Q的运动时间为t,则BP=2t, PC=(8﹣2t)cm ①当△BPD≌△CQP时,即BD=PC时,8﹣2t=5, 解得:t=1.5, 则BP=CQ=2t=3, 故点Q的运动速度为:3÷1.5=2(厘米/秒); ②当BPD≌△CPQ,即BP=PC,CQ=BD=5时, ∵BC=8cm, ∴BP=PC=4cm, ∴t=4÷2=2(秒), 故点Q的运动速度为(厘米/秒); 故答案为2或厘米/秒. 【点睛】本题主要考查了全等三角形的性质,解题的关键在于能够利用分类讨论的思想求解. 三、解答题 20.(1);(2) 【分析】(1)先提公因式n,再利用平方差公式分解; (2)先提取公因式b,再根据完全平方公式分解因式. 【详解】解:(1)原式,                     ; 解析:(1);(2) 【分析】(1)先提公因式n,再利用平方差公式分解; (2)先提取公因式b,再根据完全平方公式分解因式. 【详解】解:(1)原式,                     ;                                                (2)原式 . 【点睛】本题考查多项式的分解因式,掌握因式分解的方法:提公因式法、平方差公式、完全平方公式,根据多项式的特点选用恰当的因式分解的方法是解题的关键. 21.(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程 解析:(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程得: 去分母:3-x=x-2, 2x=5, ∴x=.        经检验,x=是原方程的解.        ∴原解方程的解为x=. (2) 两边都乘以(x2-1)得:(x+1)2-4=x2-1, x2+2x+1-4=x2-1, 2x=2, ∴x=1.        检验:当x=1时,x2-1=0, ∴x=1是原方程的增根.        ∴原方程无解. 【点睛】本题考查了解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键. 22.见解析 【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论. 【详解】证明:∵DC∥AB, ∴∠D=∠B, 在△COD与△AOB中, , ∴△COD≌ 解析:见解析 【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论. 【详解】证明:∵DC∥AB, ∴∠D=∠B, 在△COD与△AOB中, , ∴△COD≌△AOB(AAS), ∴DC=AB. 【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 23.(1)65° (2)见解析 (3) 【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论; (2)根据三角形外角性质可得出,再由同位角相等,两直线平行可 解析:(1)65° (2)见解析 (3) 【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论; (2)根据三角形外角性质可得出,再由同位角相等,两直线平行可证明结论; (3)由得,再结合外角的性质得,再证明即可得到结论. (1) ∵在中,,, ∴, ∴ ∵BE是∠CBD的平分线, ∴; (2) ∵,, ∴. 又∵, ∴, ∴. (3) 若,则 ∵∠CBD=∠A+∠ACB=∠A+90° ∴ ∵ ∴ ∴ 整理得, 【点睛】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键. 24.(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即 解析:(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即可解答. (1) 解:猜想方程, 即方程的解是,. 故答案为:,; (2) 解:猜想方程关于的方程的解为,. 故答案为:; (3) 解:, 即, 即, 即, 即, 可得或, 解得:,. 经检验,,是原分式方程的根. 【点睛】本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键. 25.(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到 解析:(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值; (3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值. 【详解】解:(1)x2-4x-5 =(x-2)2-9 =(x-2+3)(x-2-3) =(x+1)(x-5), 故答案为:(x+1)(x-5); (2)∵-2x2-4x+3=-2(x+1)2+5, ∴当x=-1时,多项式-2x-4x+3有最大值,这个最大值是5; (3)∵, ∴, ∴, ∴, ∴a-2b=0,b-1=0, ∴a=2,b=1. 【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答. 26.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 27.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服