资源描述
人教版初二数学上册期末试卷附答案
一、选择题
1.下列四个图形中,是中心对称图形且不是轴对称图形的为( )
A. B. C. D.
2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.数0.00005用科学记数法表示为( )
A. B. C. D.
3.下列运算中,正确的是( )
A. B. C. D.
4.要使分式有意义,则的取值应满足( )
A. B. C. D.
5.下列各式中,从左到右因式分解正确的是( )
A. B.
C. D.
6.分式﹣可变形为( )
A.﹣ B.﹣ C. D.
7.如图,,在线段,上,且,再添加条件( ),不能得到
A. B. C. D.
8.关于x的分式方程的解为正数,则m的取值范围是( )
A.m>2 B.m<2 C.m<2且m≠0 D.m≠0
9.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )
A. B.
C. D.
10.如图,D为的外角平分线上一点并且满足,过D作于E,交BA的延长线于F,则下列结论:
①,②,③,④,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.若分式的值为0,则x的值是______.
12.在直角坐标系中,点关于y轴对称点的坐标是___________.
13.如果如果mn=2,mn=-4,那么 的值为________
14.如果,那么我们规定,例如:因为,所以.若,,,则________.
15.如图,的面积为24,的长为8,平分,E、F分别是和上的动点,则的最小值为____________.
16.若9x2+kx+是一个完全平方式.则k=_____.
17.已知一个n边形的内角和等于,则n=_____
18.如图,在△ABC中,厘米,厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为______时,能够在某一时刻使与△CQP全等.
三、解答题
19.因式分解:
(1); (2).
20.解下列方程:
(1).
(2)
21.如图,AC和BD相交于点O,OA=OC,DC∥AB.求证DC=AB.
22.如图,在中,,的外角的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.
(1)若,求的度数;
(2)在(1)的条件下,若,求证:;
(3)若,探究、有怎样的数量关系,直接写出答案,不用证明.
23.观察下列方程及解的特征:
①的解为:;②的解为:,;③的解为:,;……
解答下列问题:
(1)请猜想,方程的解为_____;
(2)请猜想,方程_______的解为,;
(3)解关于的分式方程.
24.教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.
例如:分解因式
求代数式的最小值,.
当时,有最小值,最小值是,
根据阅读材料用配方法解决下列问题:
(1)分解因式:__________.
(2)当x为何值时,多项式有最大值?并求出这个最大值.
(3)若,求出a,b的值.
25.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.
(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;
(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).
26.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°;
(3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系.
【参考答案】
一、选择题
2.D
解析:D
【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可.
【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意;
B、是中心对称图形,也是轴对称图形,故此选项不符合题意;
C、是中心对称图形,也是轴对称图形,故此选项不符合题意;
D、是中心对称图形,不是轴对称图形,故此选项符合题意,
故选:D.
【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键.
3.A
解析:A
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】0.00005=5×10-5.
故选:A.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.
4.C
解析:C
【分析】根据合并同类项的法则,同底数幂相乘,同底数幂的除法法则,积的乘方法则分别进行计算即可.
【详解】A.,故A错误;
B.,故B错误;
C.,故C正确;
D.,故D错误.
故选:C.
【点睛】此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,解题的关键是掌握各计算法则.
5.D
解析:D
【分析】根据分式的分母不能为0解答即可.
【详解】由题意可知,
∴
故选D
【点睛】本题考查分式有意义的条件.掌握分式的分母不能为0是解题关键.
6.D
解析:D
【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.
【详解】解:A、,故原式分解因式错误,不合题意;
B、故原式分解因式错误,不合题意;
C、,不是因式分解,不合题意;
D.,正确.
故选:D.
【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键.
7.D
解析:D
【分析】直接利用分式的基本性质将分式变形得出答案.
【详解】解:分式﹣.
故选:D.
【点睛】此题主要考查了分式的基本性质,正确掌握分式的性质是解题关键.
8.D
解析:D
【分析】根据全等三角形的判定定理依次分析判断.
【详解】解:由题意知,AD=AE,∠A=∠A,
A、当∠B=∠C时,可利用AAS证明,故正确;
B、当时,可得∠ADC=∠AEB,则可利用AAS证明,故正确;
C、当AB=AC时,可利用SAS证明,故正确;
D、当BE=CD时,根据SSA不能,故错误;
故选:D.
【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键.
9.C
解析:C
【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围.
【详解】解:∵关于x的分式方程的解为正数,
∴且
∴且
去分母得:
化简得:
∴且
解得:且,
故选:C.
【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.
10.C
解析:C
【分析】根据阴影部分的面积的不同表示方法,即可求出答案.
【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b)2
图中的阴影部分面积也可以表示为:a2-2ab+b2
可得:(a-b)2=a2-2ab+b2
故选:C
【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积
11.D
解析:D
【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”可证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,根据三角形内角和是180°和∠AOB=∠COD(设AC交BD于点O),得到∠BDC=∠BAC;根据三角形内角和是180°易得∠DAE=∠CBD,再根据角平分线可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.
【详解】∵AD平分∠CAF,DE⊥AC,DF⊥AB
∴DE=DF
在Rt△CDE和Rt△BDF中
∴Rt△CDE≌Rt△BDF(HL),故①正确;
∴CE=AF
在Rt△ADE和Rt△ADF中
∴Rt△ADE≌Rt△ADF(HL)
∴AE=AF
∴CE=AB+AF=AB+AE,故②正确;
∵Rt△CDE≌Rt△BDF
∴∠DBF=∠DCE
∵∠AOB=∠COD(设AC交BD于点O)
∴∠BDC=∠BAC,故③正确;
∵∠BAC+∠ABC+∠ACB=180°
∠BDC+∠DBC+∠DCB=180°
∠DBF=∠DCE
∴∠DAE=∠CBD,
∵∠DAE=∠DAF,
∴∠DAF=∠CBD,故④正确;
综上所述,正确的结论有①②③④.
故选D
【点睛】本题考查了角平分线上的点到角的两边距离相等的性质、全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.
二、填空题
12.-3
【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】解:由题意可得x+3=0且x-2≠0,
解得x=-3.
故答案为:-3.
【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.
13.(5,6)
【分析】当两点关于y轴对称时,它们的纵坐标相等,横坐标互为相反数;
【详解】解:点M(-5,6)关于y轴的对称点坐标是(5,6);
故答案为:(5,6).
【点睛】本题考查了轴对称的性质,坐标系中点的特征;掌握对称的性质是解题关键.
14.-3
【分析】先化简分式,然后将m -n=2,mn=-4的值代入计算即可.
【详解】,
∵m -n=2,mn=-4,
∴原式=.
故答案为-3.
【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键.
15.
【分析】由新规定的运算可得,,,再将转化为后,再代入求值即可.
【详解】由于,,,根据新规定的运算可得,
,,,
,
故答案为:.
【点睛】本题考查幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.
16.6
【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值.
【详解】解:如图所示,在上取点,使,过
解析:6
【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值.
【详解】解:如图所示,在上取点,使,过点C作,垂足为H,连接、,交于,.
∵的面积为24,的长为8,
∴,
∴,
∵平分,
∴
又∵,,
∴≌(SAS),
∴,
∴,
∵E、F分别是和上的动点,
∴,
∴
∴当C、E、共线且点与点H重合时,即,这时的值最小,
∴最小值为6.
故答案为:6.
【点睛】本题考查轴对称—最短路线问题.灵活应用角平分线性质、三角形三边的关系、垂线段最短,将所求最小值转化为求的长是解题的关键.
17.±3
【分析】利用完全平方公式的结构特征判断即可确定出k的值.
【详解】解:有题意知9x2+kx+=(3x=9x2
故k=
故答案为±3.
【点睛】本题考查了完全平方式,熟练掌握完全平方公
解析:±3
【分析】利用完全平方公式的结构特征判断即可确定出k的值.
【详解】解:有题意知9x2+kx+=(3x=9x2
故k=
故答案为±3.
【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
18.5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=5.
故答案为:5.
【点睛】此题主要考查的是多
解析:5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=5.
故答案为:5.
【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
19.2或厘米/秒
【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.
【详解】解:
解析:2或厘米/秒
【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.
【详解】解:∵AB=10cm,BC=8cm,点D为AB的中点,
∴BD=×10=5cm,
设点P、Q的运动时间为t,则BP=2t,
PC=(8﹣2t)cm
①当△BPD≌△CQP时,即BD=PC时,8﹣2t=5,
解得:t=1.5,
则BP=CQ=2t=3,
故点Q的运动速度为:3÷1.5=2(厘米/秒);
②当BPD≌△CPQ,即BP=PC,CQ=BD=5时,
∵BC=8cm,
∴BP=PC=4cm,
∴t=4÷2=2(秒),
故点Q的运动速度为(厘米/秒);
故答案为2或厘米/秒.
【点睛】本题主要考查了全等三角形的性质,解题的关键在于能够利用分类讨论的思想求解.
三、解答题
20.(1);(2)
【分析】(1)先提公因式n,再利用平方差公式分解;
(2)先提取公因式b,再根据完全平方公式分解因式.
【详解】解:(1)原式,
;
解析:(1);(2)
【分析】(1)先提公因式n,再利用平方差公式分解;
(2)先提取公因式b,再根据完全平方公式分解因式.
【详解】解:(1)原式,
;
(2)原式
.
【点睛】本题考查多项式的分解因式,掌握因式分解的方法:提公因式法、平方差公式、完全平方公式,根据多项式的特点选用恰当的因式分解的方法是解题的关键.
21.(1)x=
(2)无解
【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验;
(2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验.
(1)
整理方程
解析:(1)x=
(2)无解
【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验;
(2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验.
(1)
整理方程得:
去分母:3-x=x-2,
2x=5,
∴x=.
经检验,x=是原方程的解.
∴原解方程的解为x=.
(2)
两边都乘以(x2-1)得:(x+1)2-4=x2-1,
x2+2x+1-4=x2-1,
2x=2,
∴x=1.
检验:当x=1时,x2-1=0,
∴x=1是原方程的增根.
∴原方程无解.
【点睛】本题考查了解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键.
22.见解析
【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论.
【详解】证明:∵DC∥AB,
∴∠D=∠B,
在△COD与△AOB中,
,
∴△COD≌
解析:见解析
【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论.
【详解】证明:∵DC∥AB,
∴∠D=∠B,
在△COD与△AOB中,
,
∴△COD≌△AOB(AAS),
∴DC=AB.
【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
23.(1)65°
(2)见解析
(3)
【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论;
(2)根据三角形外角性质可得出,再由同位角相等,两直线平行可
解析:(1)65°
(2)见解析
(3)
【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论;
(2)根据三角形外角性质可得出,再由同位角相等,两直线平行可证明结论;
(3)由得,再结合外角的性质得,再证明即可得到结论.
(1)
∵在中,,,
∴,
∴
∵BE是∠CBD的平分线,
∴;
(2)
∵,,
∴.
又∵,
∴,
∴.
(3)
若,则
∵∠CBD=∠A+∠ACB=∠A+90°
∴
∵
∴
∴
整理得,
【点睛】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.
24.(1),
(2)
(3),
【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果;
(2)仿照阅读材料中的方程解的规律,归纳总结得到结果;
(3)先把原方程变形后,利用得出的规律即
解析:(1),
(2)
(3),
【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果;
(2)仿照阅读材料中的方程解的规律,归纳总结得到结果;
(3)先把原方程变形后,利用得出的规律即可解答.
(1)
解:猜想方程,
即方程的解是,.
故答案为:,;
(2)
解:猜想方程关于的方程的解为,.
故答案为:;
(3)
解:,
即,
即,
即,
即,
可得或,
解得:,.
经检验,,是原分式方程的根.
【点睛】本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键.
25.(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1
【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;
(2)根据题目中的例子,先将所求式子变形,然后即可得到
解析:(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1
【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;
(2)根据题目中的例子,先将所求式子变形,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值;
(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值.
【详解】解:(1)x2-4x-5
=(x-2)2-9
=(x-2+3)(x-2-3)
=(x+1)(x-5),
故答案为:(x+1)(x-5);
(2)∵-2x2-4x+3=-2(x+1)2+5,
∴当x=-1时,多项式-2x-4x+3有最大值,这个最大值是5;
(3)∵,
∴,
∴,
∴,
∴a-2b=0,b-1=0,
∴a=2,b=1.
【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答.
26.(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B
解析:(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.
【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵ ,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△DMN与△DEN中,
∵ ,
∴△DMN≌△DEN(SAS),
∴MN=NE=CE+NC=BM+NC.
(2)如图②中,结论:MN=NC﹣BM.
理由:在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵ ,
∴△BMD≌△CED(SAS),
∴DM= DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△MDN和△EDN中
∵ ,
∴△MDN≌△EDN(SAS),
∴MN =NE=NC﹣CE=NC﹣BM.
【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
27.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可
解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
(2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可;
(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可.
【详解】(1)
由绝对值的非负性和平方数的非负性得:
解得:;
(2)如图1,作于E
是等腰直角三角形,
;
(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C
∴
∵在四边形MCOB中,
是等腰直角三角形
∴
是等腰直角三角形
.
【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
展开阅读全文