1、人教版七年级数学下册期末综合复习卷(及解析)一、选择题1的值是()A3B3C3D92下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,直线,被直线所截,则的度数为( )A40B60C45D706下列计算正确的是( )ABCD7一把直尺和一块直角三角尺(含30、60角)如图所示摆放,直尺的一边与三角尺的两直角边B
2、C、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若CAF42,则CDE度数为( )A62B48C58D728在平面直角坐标系中,对于点P(x,y),我们把点P(1y,x1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到点A1、A2、A3、A4,若点A1的坐标为(3,2),则点A2020的坐标为()A(3,2)B(1,2)C(1,2)D(3,2)九、填空题9若+=0,则xy=_十、填空题10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11在ABC中,AD为高线,AE为角平分线,当B=40,
3、ACD=60,EAD的度数为_.十二、填空题12已知,且,请直接写出、的数量关系_十三、填空题13如图,将长方形沿折叠,使点C落在边上的点F处,若,则_十四、填空题14对于这样的等式:若(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,则32a0+16a18a2+4a32a4+a5的值为_十五、填空题15已知,则_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、,那么点的坐标为_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的:(1);(2);(3)十九、解答题19完成下面的证明与
4、解题如图,ADBC,点E是BA延长线上一点,EDCE(1)求证:BD证明:ADBC,B_(_)EDCE,ABCD(_)D_(_)BD(2)若CE平分BCD,E50,求B的度数二十、解答题20在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”例如:点的“3系置换点”的坐标为,即(1)点(2,0)的“2系置换点”的坐标为_;(2)若点的“3系置换点”的坐标是(-4,11),求点的坐标(3)若点(其中),点的“系置换点”为点,且,求的值;二十一、解答题21阅读下面的文字,解答问题,例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 (2)已
5、知:5小数部分是m,6+小数部分是n,且(x+1)2m+n,请求出满足条件的x的值二十二、解答题22如图是一块正方形纸片(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm(2)若一圆的面积与这个正方形的面积都是2cm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“”或“”或“”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;
6、直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由二十四、解答题24已知:和同一平面内的点(1)如图1,点在边上,过作交于,交于根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;(2)如图2,点在的延长线上,请判断与的位置关系,并说明理由(3)如图3,点是外部的一个动点过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形二十五、解答题25如图,
7、在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、选择题1B解析:B【分析】根据表示9的算术平方根,而9的算术平方根是3,进而得出答案【详解】解:因为32=9,所以=3,故选:B【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用
8、排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可【详解】解:解:在平面直角坐标系中,点P(2,1)位于第二象限,故选:B【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限4B【分析】根
9、据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答6D【分析】分别
10、根据算术平方根的定义以及立方根的定义逐一判断即可【详解】解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键7B【分析】先根据平行线的性质求出CED,再根据三角形的内角和等于180即可求出CDE【详解】解:DEAF,CAF=42,CED=CAF=42,DCE=90,CDE+CED+DCE=180,CDE=180-CED-DCE=180-42-90=48,故选:B【点睛】本题主要考查了平行线的性质以及三角形内角和等于180,熟练掌握平行线的性质:两直线平
11、行,同位角相等是解决问题的关键8D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),以此类推,每4个点为一个循环,20204=505,点A2020的坐标与A4的坐标相同,为(3,-2)故选D.【
12、点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键九、填空题916【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解【详解】+=0,x8=0,y2=0,x=8,y=2,xy=.故答案为16.【点睛】解析:16【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解【详解】+=0,x8=0,y2=0,x=8,y=2,xy=.故答案为16.【点睛】本题考查非负数的性质:算术平方根,解题的关键是掌握算术平方根具有双重非负性:(1)被开方数a是非负数,即a0;(2)算术平方根本身是非负数,即0十、填空题10【分析】根据点坐标关于坐标轴
13、的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的
14、定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点
15、睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数十二、填空题12(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图解析:(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图所示,过点E作,过点F作,且,故答案为:【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相
16、应的角的关系是解题关键十三、填空题1323【分析】根据EFB求出BEF,根据翻折的性质,可得到DEC=DEF,从而求出DEC的度数,即可得到EDC【详解】解:DFE是由DCE折叠得到的,DEC=FED解析:23【分析】根据EFB求出BEF,根据翻折的性质,可得到DEC=DEF,从而求出DEC的度数,即可得到EDC【详解】解:DFE是由DCE折叠得到的,DEC=FED,又EFB=44,B=90,BEF=46,DEC=(180-46)=67,EDC=90-DEC=23,故答案为:23【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键十四、填空题14-1【分析】根据多项式的乘
17、法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+解析:-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,a01,a15,a210,a310,a45,a51,把a01,a15,a210,a310,a45,a51代入32a0+16a18a2+4a32a4+a5中,可得:32a0+16a18a2+4a32a4+a532+8080+4010+11,故答案为:1
18、【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.十五、填空题1511【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答十六、填空题16【分析】结合图象可知,纵坐标每四个点循环一次,而25=
19、46+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,解析:【分析】结合图象可知,纵坐标每四个点循环一次,而25=46+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,1,是第七个周期的第一个点,每一个周期第一点的坐标为:,(12,1)故答案为:(12,1)【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键十七、解答题17(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(
20、2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原式(2)原式【点解析:(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原式(2)原式【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键十八、解答题18(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1解析:(1)0.3;(2);(3
21、)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1),;(2),;(3),或,解得:或【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键十九、解答题19(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】
22、(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,可得ABCD,DCE50,而CE平分BCD,即得BCD100,故B80【详解】(1)证明:ADBC,BEAD(两直线平行,同位角相等),EDCE,ABCD(内错角相等,两直线平行),DEAD(两直线平行,内错角相等),BD;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:EDCE,E50,ABCD,DCE50,B+BCD180,CE平分BCD,BCD2DCE100,B80【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和
23、计算二十、解答题20(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据解析:(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案【详解】解:(1)点(2,0)的“2系置换点”的坐标为,即;(2)由题意得:解得: 点A的坐标为:;(3)点为即点B坐标为,为常数,且【点睛】本题考查了二元一次方程组的解法、绝
24、对值方程,理解“系置换点”的定义并能运用是本题的关键二十一、解答题21(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整解析:(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整数部分是4,小数部分是4故答案为:4;(2)5小数部分是m,051,6+小数部分是nm=5-, n=6+-10=-4 m+n=1 (x+1)21x+1=1解得:x=0或-2【点睛】
25、此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键二十二、解答题22(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB21,则AB1,由勾股定理,AC;故答案为:.(2)由圆面
26、积公式,可得圆半径为,周长为,正方形周长为4;即C圆C正;故答案为:(3)不能;由已知设长方形长和宽为3xcm和2xcm长方形面积为:2x3x12解得x长方形长边为34他不能裁出【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-
27、35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+
28、GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二十四、解答题24(1)图见解析,理由见解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性
29、质可解析:(1)图见解析,理由见解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得【详解】(1)由题意,补全图形如下:,理由如下:,;(2),理由如下:如图,延长BA交DF于点O,;(3)由题意,有以下两种情况:如图3-1,理由如下:,由对顶角相等得:,;如图3-2,理由如下:,【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3
30、),正确分两种情况讨论是解题关键二十五、解答题25(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答
31、案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180