1、上海市上宝中学数学八年级上册期末试卷含答案一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2、世界最大的单口球面射望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒数据0.00519用科学记数法表示为()ABCD3、下列计算正确的是()ABCD4、使二次根式有意义的x的取值范围是()Ax1Bx1Cx1Dx15、下列从左至右的变形是因式分解的是()Ax(xy)x2xyB(ab)(ab)a2b2Ca22a1(a1)2Dx22x9x(x2)96、下列计算中,一定正确的是()ABCD7、如图,已知12,ACAD,增加下列条件之一:ABAE
2、;BCED;CD;BE其中能使ABCAED的条件有()A1个B2个C3个D4个8、关于x的分式方程有增根,则m的值是()A1B2CD9、如图,A40,D45,求2的度数()A85B90C75D45二、填空题10、已知的周长相等,现有两个判断:若,则;若,则,对于上述的两个判断,下列说法正确的是()A,都正确B,都错误C错误,正确D正确,错误11、若分式的值为零,则x的值为_12、已知平面直角坐标系内两点关于x轴对称,则_13、若a+b=2,ab=3,则的值为_14、计算:_15、如图,在中,点、分别是、上的动点,连接、,则的最小值为_16、一个正多边形的内角和等于540,则它的边数是_17、(
3、1)已知x+y4,xy3,则x2+y2的值为 _(2)已知(x+y)225,x2+y217,则(xy)2的值为 _(3)已知x满足(x2020)2+(2022x)212,则(x2021)2的值为 _18、如图,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动它们运动的时间为设点的运动速度为,若使得与全等,则的值为_三、解答题19、分解因式:(1);(2)20、计算:(1)1;(2)21、已知:如图,12,BAED,BCED求证:ABAE22、(1)如图1,在ABC中,BE平分ABC,CE平分ACD,试说明:EA;【拓展应用】(2)如图2,在四边形ABDC中,对角线AD平分BAC若A
4、CD130,BCD50,CBA40,求CDA的度数;若ABD+CBD180,ACB82,写出CBD与CAD之间的数量关系23、某工程队准备修建一条长3600m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前3天完成这一任务,原计划每天修建盲道多少米?24、先阅读下列材料,然后解答后面的问题:材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”(1)直接写出:最小的“欢喜数”是 ,最大的“欢喜数”是 ;(2)求证:任
5、意“欢喜数 ”一定能被11整除;(3)若“欢喜数 ”m为奇数,且十位数字比个位数字大5, 求所有符合条件的“欢喜数 ”m25、如图1,将两块全等的三角板拼在一起,其中ABC的边BC在直线l上,ACBC且AC = BC;EFP的边FP也在直线l上,边EF与边AC重合,EFFP且EF = FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将三角板EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将三角板EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长
6、线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由一、选择题1、B【解析】B【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可【详解】A.是轴对称图形,不是中心对称图形,故A错误;B.是轴对称图形,也是中心对称图形,故B正确;C.是轴对称图形,不是中心对称图形,故C错误;D.是轴对称图形,不是中心对称图形,故D错误故选:B【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转1
7、80,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心2、B【解析】B【分析】用科学记数法表示绝对值小于1的数形如为负整数,据此解答【详解】解:数据0.00519用科学记数法表示为,故选:B【点睛】本题考查科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键3、A【解析】A【分析】根据同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法运算法则进行计算即可【详解】解:A,故A符合题意;B与不能合并,故B不符合题意;C,故C不符合题意;D,故D不符合题意;故选:A【点睛】本题考查了同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法,熟练掌
8、握它们的运算法则是解题的关键4、B【解析】B【分析】根据二次根式有意义的条件是被开方数大于等于0,列式计算即可得解【详解】解:由题意得,x+10,解得,故选:B【点睛】本题考查二次根式有意义的条件,涉及到解一元一次不等式,熟记二次根式的性质是解决问题的关键5、C【解析】C【分析】把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,分别对四个选项进行判断即可【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、是因式分解,故此选项符合题意;D、等式右边不是整式的
9、积的形式,不是因式分解,故此选项不符合题意故选:C【点睛】本题考查因式分解,解题的关键是掌握因式分解的知识6、B【解析】B【分析】利用分式的性质、乘法法则逐项判断即可得【详解】解:A、与不能约分,所以,则此项错误,不符题意;B、,则此项正确,符合题意;C、,则此项错误,不符题意;D、,则此项错误,不符题意;故选:B【点睛】本题考查了分式的运算,熟练掌握分式的性质是解题关键7、C【解析】C【分析】先由12得到CABDAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断【详解】解:12,CABDAE,ACAD,当ABAE时,可根据“SAS”判断ABCAED;当BCED时,不能
10、判断ABCAED;当CD时,可根据“ASA”判断ABCAED;当BE时,可根据“AAS”判断ABCAED故选:C【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等8、B【解析】B【分析】根据题意可得x=1,然后代入整式方程中进行计算,即可解答【详解】解:,m-2=3(x-1),解得:x=,分式方程有增根,x=1,把x=1代入x=中,1=,解得:m=2,故选:B【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关
11、键9、A【解析】A【分析】首先根据平行线的性质求得的大小,再根据三角形的一个外角等于不相邻的两个内角的和,即可得出答案【详解】,故选:A【点睛】本题主要考查平行线的性质以及三角形外角的性质,熟练掌握这些性质是解题的关键二、填空题10、A【解析】A【分析】根据即可推出,判断正确;根据相似三角形的性质和判定和全等三角形的判定推出即可【详解】解:,的周长相等,正确;如图,延长到,使,延长到,使,的周长相等,在和中, (SAS),又,在和中,(AAS),正确;综上所述:,都正确故选:A【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等
12、三角形的判定定理有,而和不能判断两三角形全等11、-1【分析】根据分式的值为0的条件,即可求解【详解】解:根据题意得:且,解得:故答案为:-1【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件是分子等于0,且分母不等于0是解题的关键12、【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此列方程组可得答案【详解】解:平面直角坐标系内两点关于x轴对称, 解得: 故答案为:【点睛】本题主要考查了直角坐标系点的对称性质,关键是把握关于x轴对称的点的坐标变化规律13、【分析】根据异分母分式加减法法则计算即可【详解】解:a+b=2,ab=3,=,
13、故答案为:【点睛】此题是分式的化简求值问题,涉及整体代入求值,正确掌握异分母分式的加减法计算法则是解题的关键14、【分析】根据同底数幂相乘法则逆用、积的乘方法则逆用运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂相乘法则逆用、积的乘方法则逆用,掌握运算法则是解题的关键15、【分析】作点C关于线段AB的对称点D,过点D作DHAC,交AB于点,连接AD,则根据轴对称的性质及点到直线垂线段最短可知DH即为的最小值,进而根据ADC的面积可进行求解【详解】解:作点C关【解析】【分析】作点C关于线段AB的对称点D,过点D作DHAC,交AB于点,连接AD,则根据轴对称的性质及点到直线垂线段最短可知D
14、H即为的最小值,进而根据ADC的面积可进行求解【详解】解:作点C关于线段AB的对称点D,过点D作DHAC,交AB于点,连接AD,如图所示:,根据轴对称的性质及点到直线垂线段最短可知DH即为的最小值,的最小值为;故答案为【点睛】本题主要考查轴对称的性质、等积法及最短路径问题,熟练掌握利用轴对称的性质求最短路径问题是解题的关键16、5【分析】根据n边形的内角和为(n-2)180得到(n-2)180=540,然后解方程即可【详解】解:设这个多边形的边数为n,(n-2)180=540,n=4、故答案【解析】5【分析】根据n边形的内角和为(n-2)180得到(n-2)180=540,然后解方程即可【详解
15、】解:设这个多边形的边数为n,(n-2)180=540,n=4、故答案为:4、【点睛】本题考查了多边行的内角和定理,掌握n边形的内角和为(n-2)180是解决此题关键17、10 9 5【分析】(1)根据完全平方公式(x+y)2x2+2xy+y2,把原式变形后求值;(2)先求出xy,再根据完全平方公式变形后求值;(3)先变形为(x2【解析】 10 9 5【分析】(1)根据完全平方公式(x+y)2x2+2xy+y2,把原式变形后求值;(2)先求出xy,再根据完全平方公式变形后求值;(3)先变形为(x2021)+12+(x2021)1212,然后利用完全平方公式展开即可得到(x2021)2的值【详解
16、】解:(1)x+y4,xy3,x2+y2(x+y)22xy1669、故答案为:10;(2)(x+y)225,x2+y217,x2+y2+2xy(x2+y2)8,xy4,(xy)2x2+y22xy1788、故答案为:9;(3)(x2020)2+(x2022)212,(x2021)+12+(x2021)1212,(x2021)2+2(x2021)+1+(x2021)22(x2021)+112,(x2021)24、故答案为:4、【点睛】本题考查了完全平方公式,解题关键是通过对公式的变形,求出代数式的值18、或#或【分析】分两种情形:当时,可得:;当时, 根据全等三角形的性质分别求解即可【详解】解:当
17、时,可得:, 运动时间相同,的运动速度也相同,;当时,【解析】或#或【分析】分两种情形:当时,可得:;当时, 根据全等三角形的性质分别求解即可【详解】解:当时,可得:, 运动时间相同,的运动速度也相同,;当时,故答案为:或【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题三、解答题19、(1)(2)【分析】(1)原式运用平方差公式直接分解即可;(2)原式先提取公因式a,再运用完全平方公式分解即可(1)(2)【点睛】本题考查了用提公因式法和公式法进行因式分解,【解析】(1)(2)【分析】(1)原式运用平方差公式直接分解即可;
18、(2)原式先提取公因式a,再运用完全平方公式分解即可(1)(2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止20、(1);(2)【分析】(1)根据分式加法的性质计算,即可得到答案;(2)根据幂的乘方、同底数幂乘法和除法的性质计算,即可得到答案【详解】(1)1;(2) 【点睛】本题考查【解析】(1);(2)【分析】(1)根据分式加法的性质计算,即可得到答案;(2)根据幂的乘方、同底数幂乘法和除法的性质计算,即可得到答案【详解】(1)1;(2) 【点睛】本题考查了分式加减法、幂的乘方、同底数
19、幂乘除法的知识;解题的关键是熟练掌握分式加减法、幂的乘方、同底数幂乘方和除法的性质,从而完成求解21、见解析【分析】证明DAECAB(AAS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中【解析】见解析【分析】证明DAECAB(AAS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中,DAECAB(AAS),AB=AE【点睛】本题考查了全等三角形的判定及性质,证明DAECAB是解题的关键22、(1)见解析;(2)CDA20;CAD+41CBD【分析】(1)由三角形外
20、角的性质可得ACD=A+ABC,ECDE+EBC;由角平分线的性质可得,利用等量代换,【解析】(1)见解析;(2)CDA20;CAD+41CBD【分析】(1)由三角形外角的性质可得ACD=A+ABC,ECDE+EBC;由角平分线的性质可得,利用等量代换,即可求得A与E的关系;(2)根据三角形的内角和定理和角平分线的定义即可解答;设CBD=a,根据已知条件得到ABC=180-2a,根据三角形的内角和定理和角平分线的定义即可解答【详解】(1)证明:ACD是ABC的外角ACDA+ABCCE平分ACD又ECDE+EBCBE平分ABC;(2)ACD130,BCD50ACBACDBCD1305080CBA
21、40BAC180ACBABC180804060AD平分BACCDA180CADACD20;CAD+41CBD设CBDABD+CBD180ABC1802ACB82CAB180ABCACB180(1802)82282AD平分BACCADCAB41CAD+41CBD【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180是解答本题的关键23、原计划每天修建盲道240米【分析】设原计划每天修建盲道米,结合原计划的工作时间比实际的工作时间多3天,再列方程,解方程即可【详解】解:设原计划每天修建盲道米,根据题意得:解这个方程,得:【解析】原计划每天修建盲道24
22、0米【分析】设原计划每天修建盲道米,结合原计划的工作时间比实际的工作时间多3天,再列方程,解方程即可【详解】解:设原计划每天修建盲道米,根据题意得:解这个方程,得:,经检验,为原方程的解答:原计划每天修建盲道240米【点睛】本题考查的是分式方程的应用,确定相等关系,再利用相等关系列方程是解本题的关键24、(1)110;990;(2)见解析(3)561和583【分析】(1)按照题意写出最小的“欢喜数”与最大的“欢喜数”;(2)可设“欢喜数”为,则有100a+10b+b-a=99a+11b=11【解析】(1)110;990;(2)见解析(3)561和583【分析】(1)按照题意写出最小的“欢喜数”
23、与最大的“欢喜数”;(2)可设“欢喜数”为,则有100a+10b+b-a=99a+11b=11(9a+b),再通过计算即可;(2)“欢喜数 ” 十位数字比个位数字大5, 且m为奇数,可得a=5,求出符合条件的奇数(1)由题意可得:最小的“欢喜数”是110,最大的“欢喜数”是990;故答案为:110;990;(2)由题意,可设“欢喜数”为,则有:100a+10b+b-a=99a+11b=11(9a+b)a,b是整数,9a+b是整数任意“欢喜数 ”一定能被11整除(3)“欢喜数 ” 十位数字比个位数字大5, 且m为奇数即a=5符合条件的奇数为561和583【点睛】此题考查了利用整式乘法解决数字新定
24、义问题的能力,关键是能结合题意利用整式乘法进行计算求解25、(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2)求【解析】(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2)求出CQ=CP,根据SAS证BCQACP,推出AP=BQ,CBQ=PAC,根据三角形内角和定理求出CBQ+BQC=90,推出PAC+AQG=90,求出AGQ=90即可;(3)
25、BO与AP所满足的数量关系为相等,位置关系为垂直证明方法与(2)一样【详解】(1)AB=AP且ABAP,证明:ACBC且AC=BC,ABC为等腰直角三角形,BAC=ABC=,又ABC与EFP全等,同理可证PEF=45,BAP=45+45=90,AB=AP且ABAP;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是APBQ,证明:延长BQ交AP于G,由(1)知,EPF=45,ACP=90,PQC=45=QPC,CQ=CP,ACB=ACP=90,AC=BC,在BCQ和ACP中 BCQACP(SAS),AP=BQ,CBQ=PAC,ACB=90,CBQ+BQC=90,CQB=AQG,AQG+PAC=90,AGQ=180-90=90,APBQ;(3)成立证明:如图,EPF=45,CPQ=45ACBC,CQP=CPQ,CQ=CP在RtBCQ和RtACP中, RtBCQRtACP(SAS)BQ=AP;延长BQ交AP于点N,PBN=CBQRtBCQRtACP,BQC=APC在RtBCQ中,BQC+CBQ=90,APC+PBN=90PNB=90BQAP【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等也考查了等腰直角三角形的判定与性质