资源描述
福州市文博中学数学八年级上册期末试卷
一、选择题
1、下面图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )
A. B. C. D.
2、随着自主研发能力的增强,上海微电子发布消息称已经成功研发出了的光刻机.其中0.000000028用科学记数法表示为( )
A. B. C. D.
3、下列各式中,计算结果是x8的是( )
A.x4+x4 B.x16÷x2 C.x4•x4 D.(﹣2x4)2
4、式子有意义的a的取值范围是( )
A.a≥1 B.a≥1且a≠0 C.a>1且a≠0 D.a≠0
5、下列各式从左到右的变形是因式分解的是( )
A. B.
C. D.
6、下列各式从左至右变形一定正确的是( )
A. B. C. D.
7、如图,,给出下列条件:①,②,③,④,从中添加一个条件后,能证明的是( )
A.①②③ B.②③④ C.①②④ D.①③④
8、若关于x的一元一次不等式组的解集为,且关于y的分式方程的解是非负整数,则所有满足条件的整数a的值之和是( )
A.10 B.19 C.16 D.8
9、如图,中,点E在边上,,连接.若,则的度数为( )
A. B. C. D.
二、填空题
10、小张利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的恒等式为( )
A. B.
C. D.
11、若分式的值为0,则x的取值为_______.
12、已知点P(a-1,2a-4)关于y轴的对称点在第二象限,则a的取值范围是_______.
13、若,则______.
14、已知=320,a2-b2=322, 则a-b=_______.
15、如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值_____cm.
16、如图1,将一个长为2a,宽为2b的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为,小正方形面积为,则的结果是________(用含a,b的式子表示).
17、已知,则______.
18、如图,AB=16,AC=6,AC⊥AB,BD⊥AB,垂足分别为A、B.点P从点A出发,以每秒2个单位的速度沿AB向点B运动;点Q从点B出发,以每秒a个单位的速度沿射线BD方向运动.点P、点Q同时出发,当以P、B、Q为顶点的三角形与△CAP全等时,a的值为______.
三、解答题
19、分解因式:
(1)
(2)
20、解分式方程.
21、如图,D是AB边上一点,DF交AC于点E,DE=FE,AE=CE.求证:FC//AB.
22、在△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图(1),AD⊥BC于D,若∠C=75°,∠B=35°,求∠EAD;
(2)如图(1),AD⊥BC于D,判断∠EAD与∠B,∠C数量关系∠EAD=(∠C﹣∠B)是否成立?并说明你的理由;
(3)如图(2),F为AE上一点,FD⊥BC于D,这时∠EFD与∠B、∠C又有什么数量关系? ;(不用证明)
23、儿童节前夕,某中学组织学生去儿童福利院慰问,在准备礼品时发现,购买个甲礼品比购买个乙礼品多花元,并且花费元购买甲礼品和花费元购买乙礼品可买到的数量相等.
(1)求甲、乙两种礼品的单价各为多少元;
(2)学校准备购买甲、乙两种礼品共个送给福利院的儿童,并且购买礼品的总费用不超过元,那么最多可购买多少个甲礼品?
24、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.
十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子和分解因式,如图:
;
.
请你仿照以上方法,探索解决下列问题:
(1)分解因式:;
(2)分解因式:.
25、在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.
(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;
(2)当a+b=0时,
①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;
②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.
一、选择题
1、A
【解析】A
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行分析即可.
【详解】解:A、是轴对称图形,故此选项符合题意;
B、不是轴对称图形,故此选项不合题意;
C、不是轴对称图形,故此选项不合题意;
D、不是轴对称图形,故此选项不合题意;
故选:A.
【点睛】本题考查了轴对称图形的识别,熟练掌握和运用轴对称图形的定义是解决本题的关键.
2、A
【解析】A
【分析】科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到2的后面,所以
【详解】解:0.000000028
故选A
【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
3、C
【解析】C
【分析】利用合并同类项的法则,同底数幂的除法的法则,积的乘方的法则,同底数幂的乘法的法则对各项进行运算即可.
【详解】解:A、x4+x4=2x4,故A不符合题意;
B、x16÷x2=x14,故B不符合题意;
C、x4•x4=x8,故C符合题意;
D、(﹣2x4)2=4x8,故D不符合题意;
故选:C.
【点睛】本题主要考查积的乘方,同底数幂的乘法,合并同类项,同底数幂的除法,解答的关键是对相应的运算法则的掌握.
4、B
【解析】B
【分析】根据分式有意义的条件分母不等于0和二次根式有意义的条件被开方数为非负数求解即可.
【详解】解:由题意,得
,解得:a≥-1,且a≠0,
故选:B.
【点睛】本题考查分式有意义的条件,二次根式有意义的条件,熟练掌握分式有意义的条件分母不等于0和二次根式有意义的条件被开方数为非负数是解题的关键.
5、B
【解析】B
【分析】根据因式分解的定义对各选项进行逐一分析即可.
【详解】解:A.,从左到右是单项式乘以多项式,不是因式分解,故此选项不符合题意;
B.,等式的右边是整式的积的形式,是因式分解,故此选项符合题意;
C.,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
D.,等式的右边不是几个整式的积,含有分式,不是因式分解,故此选项不符合题意;
故选B.
【点睛】本题考查因式分解的判断.解题的关键是掌握因式分解的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
6、D
【解析】D
【分析】根据分式的性质,对选项逐个判断即可,分式的分子和分母同时乘以或者除以一个不为0的数,分式的值不变.
【详解】解:A、,选项错误,不符合题意;
B、,选项错误,不符合题意;
C、当时,无意义,不符合题意;
D、,正确,符合题意;
故选:D
【点睛】此题考查了分式的性质,掌握分式的有关性质是解题的关键.
7、A
【解析】A
【分析】将条件分别代入条件中依次判断即可.
【详解】解:,
与均为直角三角形,
,,
,故①正确;
在与中,
,
,
,
,
,
,即
在与中,
,
,故②正确;
在与中,
,
,故③正确;
当时,不能推出,故④错误.
故选:A.
【点睛】本题主要考查三角形全等的判定,掌握三角形全等的判定定理是解题的关键.
8、B
【解析】B
【分析】解不等式组可得,解分式方程可得,且,由此可求整数a的值.
【详解】解: ,
由①得,x>7,
由②得,,
∵不等式组的解集为x>7,
∴,
∴a≤9,
,
两边同乘以(y-1)得,y+2a﹣3y+8=2y﹣2,
整理得,﹣4y=﹣10﹣2a,
∴,
∵方程的解是非负整数,
∴a+5是2的倍数,且,
∴a≠﹣3,
∴a的取值为﹣5,﹣1,1,3,5,7,9
∴所有满足条件的整数a的值之和是19,
故选:B.
【点睛】本题考查分式方程的解,一元一次不等式组的解集,熟练掌握一元一次不等式组的解法,分式方程的解法,注意分式方程增根的情况是解题的关键.
9、C
【解析】C
【分析】由,利用“两直线平行,内错角相等”可得出∠DCE的度数,再利用三角形的外角性质可求出∠AED的度数.
【详解】解:∵,
∴∠DCE=∠A=68°,
∴∠AED=∠DCE+∠D=68°+52°=120°.
故选:C.
【点睛】本题考查了三角形的外角性质以及平行线的性质,牢记三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
二、填空题
10、C
【解析】C
【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:C.
【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
11、
【分析】根据分式的值为零的条件可以求出x的值.
【详解】解:由题意得,,,
由得或,
由得,
∴.
故答案为:.
【点睛】本题考查分式为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.
12、##2<a
【分析】根据关于y轴的对称点在第二象限可得点P在第一象限,再根据第一象限内点的坐标符号可得,再解不等式组即可.
【详解】解:∵点P(a-1,2a-4)关于y轴的对称点在第二象限,
∴点P在第一象限,
∴,
解得:a>2,
故答案为:a>1、
【点睛】此题主要考查了关于y轴的对称点的坐标,以及一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
13、
【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为.
【详解】解:,
,
,
,
把代入得:原式,
故答案为.
【点睛】.
本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键.
14、±3
【分析】首先将=320转化为a+b=320(a-b),再将a2-b2分解为(a+b)(a-b),再用整体代入思想即可得(a-b)2=32,从而得解.
【详解】解:∵,
∴a+b=320(a-b),
又∵a2-b2=322,
∴(a+b)(a-b) =322
∴320×(a-b)2=322
∴(a-b)2=32
∴a-b=±3
故答案为:±2、
【点睛】本题考查根据条件等式求代数式值,因式分解—平方差公式,解题关键是将条件等式进行转化,然后整体代入求解.
15、8
【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.
【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接O
【解析】8
【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.
【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=8cm.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN=CD=8cm.
故答案为7、
【点睛】此题考查轴对称--最短路线问题,熟知两点之间线段最短是解题的关键.
16、4ab
【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.
【详解】∵为图2大正方形的面积;为小正方形面积,
∴为图1长方形面积
∴=2a×2b=4ab
【解析】4ab
【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.
【详解】∵为图2大正方形的面积;为小正方形面积,
∴为图1长方形面积
∴=2a×2b=4ab
故答案为:4ab
【点睛】本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键.
17、-1
【分析】根据代入计算,继而求得结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题主要考查了完全平方公式,理解是解题关键.
【解析】-1
【分析】根据代入计算,继而求得结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题主要考查了完全平方公式,理解是解题关键.
18、2或
【分析】根据题意,可以分两种情况讨论,第一种△CAP≌△PBQ,第二种△CAP≌△QBP,然后分别求出相应的a的值即可.
【详解】解:当△CAP≌△PBQ时,则AC=PB,AP=BQ,
∵AC
【解析】2或
【分析】根据题意,可以分两种情况讨论,第一种△CAP≌△PBQ,第二种△CAP≌△QBP,然后分别求出相应的a的值即可.
【详解】解:当△CAP≌△PBQ时,则AC=PB,AP=BQ,
∵AC=6,AB=16,
∴PB=6,AP=AB-AP=16-6=10,
∴BQ=10,
∴10÷a=10÷2,
解得a=2;
当△CAP≌△QBP时,则AC=BQ,AP=BP,.
∵AC=6,AB=16,
∴BQ=6,AP=BP=8,
∴6÷a=8÷2,
解得a=,
由上可得a的值是2或,
故答案为:2或
【点睛】本题考查全等三角形的性质,解答本题的关键是明确有两种情况,利用数形结合的思想解答.
三、解答题
19、(1)
(2)
【分析】(1)先提取公因式,再利用平方差公式因式分解;
(2)先利用平方差公式因式分解,再提取公因式因式分解.
(1)
解:;
(2)
解:.
【点睛】本题考查了因式分解,解题的关键
【解析】(1)
(2)
【分析】(1)先提取公因式,再利用平方差公式因式分解;
(2)先利用平方差公式因式分解,再提取公因式因式分解.
(1)
解:;
(2)
解:.
【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及平方差公式.
20、原方程无解
【详解】试题分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解:方程的两边同乘(x﹣2),得
1﹣x=﹣1+x﹣2,
解得x=1、
检验:
【解析】原方程无解
【详解】试题分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解:方程的两边同乘(x﹣2),得
1﹣x=﹣1+x﹣2,
解得x=1、
检验:把x=2代入(x﹣2)=0,x=2是原方程的增根,
∴原方程无解.
21、见解析
【分析】由DE=FE,AE=CE,易证得△ADE≌△CFE,即可得∠A=∠ECF,则可证得FCAB.
【详解】证明:在△ADE和△CFE中,
,
∴△ADE≌△CFE(SAS),
∴∠A=∠
【解析】见解析
【分析】由DE=FE,AE=CE,易证得△ADE≌△CFE,即可得∠A=∠ECF,则可证得FCAB.
【详解】证明:在△ADE和△CFE中,
,
∴△ADE≌△CFE(SAS),
∴∠A=∠ECF,
∴FC//AB.
【点睛】此题考查了全等三角形的判定与性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用.
22、(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3)过A
【解析】(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3)过A作AG⊥BC于G,根据已知条件证明FD∥AG,得到∠EFD=∠EAG,即可得解;
【详解】解:(1)∵∠C=75°,∠B=35°,
∴∠BAC=180°﹣∠C﹣∠B=70°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=35°,
又∵AD⊥BC,
∴∠DAC=90°﹣∠C=15°,则∠EAD=∠EAC﹣∠DAC=20°;
(2)∵AE平分∠BAC,
∴∠CAE=∠BAC,
∵∠BAC=180°﹣∠B﹣∠C,
∴∠EAC=∠ BAC=90°﹣∠B﹣∠C,
∴∠EAD=∠EAC﹣∠DAC=90°﹣∠B﹣∠C﹣(90°﹣∠C)=(∠C﹣∠B);
(3)如图②,过A作AG⊥BC于G,由(2)知,∠EAG=(∠C﹣∠B),
∵AG⊥BC,
∴∠AGC=90°,
∵FD⊥BC,
∴∠FDG=90°,
∴∠AGC=∠FDG,
∴FD∥AG,
∴∠EFD=∠EAG,
∴∠EFD=(∠C﹣∠B).
故答案是:∠EFD=(∠C﹣∠B).
【点睛】本题主要考查了角平分线的性质,三角形内角和定理,平行线的判定与性质,准确计算是解题的关键.
23、(1)甲礼品80元,乙礼品60元
(2)最多可购买20个甲礼品
【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可;
(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(
【解析】(1)甲礼品80元,乙礼品60元
(2)最多可购买20个甲礼品
【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可;
(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(50﹣m)个,根据题意列不等式求解即可.
(1)
设购买一个乙礼品需要x元,
根据题意得:,
解得:x=60,
经检验x=60是原方程的根,
∴x+20=80.
答:甲礼品80元,乙礼品60元;
(2)
设总费用不超过3400元,可购买m个甲礼品,则购买乙礼品(50﹣m)个,
根据题意得:80m+60(50﹣m)≤3400,
解得:m≤19、
答:最多可购买20个甲礼品.
【点睛】此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.
24、(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x+1).
【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;
(2)将3分成1乘以3,-1分成-1乘以1,由
【解析】(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x+1).
【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;
(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.
【详解】(1)y2﹣7y+12=(x﹣3)(x﹣4);
(2)3x2﹣2x﹣1=(x﹣1)(3x+1).
【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.
25、(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H
【解析】(1);(2)①见解析;②∠APB=22.5°
【分析】(1)利用非负数的性质求解即可;
(2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题.
【详解】解:(1)∵2a2+4ab+4b2+2a+1=0,
∴(a+2b)2+(a+1)2=0,
∵(a+2b)2≥0 ,(a+1)2≥0,
∴a+2b=0,a+1=0,
∴a=﹣1,b=,
∴A(﹣1,0),B(0,).
(2)①证明:如图1中,
∵a+b=0,
∴a=﹣b,
∴OA=OB,
又∵∠AOB=90°,
∴∠BAO=∠ABO=45°,
∵D与P关于y轴对称,
∴BD=BP,
∴∠BDP=∠BPD,
设∠BDP=∠BPD=α,
则∠PBF=∠BAP+∠BPA=45°+α,
∵PE⊥DB,
∴∠BEF=90°,
∴∠F=90°﹣∠EBF,
又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,
∴∠F=45°+α,
∴∠PBF=∠F,
∴PB=PF.
②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,
∵∠BOQ=∠BQF=∠FHQ=90°,
∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,
∴∠BQO=∠QFH,
∵QB=QF,
∴△FQH≌△QBO(AAS),
∴HQ=OB=OA,
∴HO=AQ=PC,
∴PH=OC=OB=QH,
∴FQ=FP,
又∠BFQ=45°,
∴∠APB=22.5°.
【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题.
展开阅读全文